import random
a = [i for i in range(20)]
print(a)
random.shuffle(a)
print(a)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[6, 5, 3, 8, 2, 17, 15, 10, 1, 14, 4, 19, 16, 13, 9, 7, 11, 18, 0, 12]
#-------------------------------------#
# 对数据集进行训练
#-------------------------------------#
import os
import time
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from tqdm import tqdm
from nets.yolo4 import YoloBody
from nets.yolo_training import Generator, YOLOLoss
from utils.dataloader import YoloDataset, yolo_dataset_collate
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape([-1,3,2])[::-1,:,:]
def get_lr(optimizer):
for param_group in optimizer.param_groups:
return param_group['lr']
def fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epoch,cuda):
total_loss = 0
val_loss = 0
net.train()
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration >= epoch_size:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
else:
images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
#----------------------#
# 清零梯度
#----------------------#
optimizer.zero_grad()
#----------------------#
# 前向传播
#----------------------#
outputs = net(images)
losses = []
num_pos_all = 0
#----------------------#
# 计算损失
#----------------------#
for i in range(3):
loss_item, num_pos = yolo_losses[i](outputs[i], targets)
losses.append(loss_item)
num_pos_all += num_pos
loss = sum(losses) / num_pos_all
#----------------------#
# 反向传播
#----------------------#
loss.backward()
optimizer.step()
total_loss += loss.item()
pbar.set_postfix(**{
'total_loss': total_loss / (iteration + 1),
'lr' : get_lr(optimizer)})
pbar.update(1)
net.eval()
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration >= epoch_size_val:
break
images_val, targets_val = batch[0], batch[1]
with torch.no_grad():
if cuda:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor)).cuda()
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
else:
images_val = Variable(torch.from_numpy(images_val).type(torch.FloatTensor))
targets_val = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets_val]
optimizer.zero_grad()
outputs = net(images_val)
losses = []
num_pos_all = 0
for i in range(3):
loss_item, num_pos = yolo_losses[i](outputs[i], targets_val)
losses.append(loss_item)
num_pos_all += num_pos
loss = sum(losses) / num_pos_all
val_loss += loss.item()
pbar.set_postfix(**{
'total_loss': val_loss / (iteration + 1)})
pbar.update(1)
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
print('Saving state, iter:', str(epoch+1))
torch.save(model.state_dict(), 'logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.pth'%((epoch+1),total_loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
#-------------------------------#
# 是否使用Cuda
# 没有GPU可以设置成False
#-------------------------------#
Cuda = True
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
#------------------------------------------------------#
# 是否对损失进行归一化,用于改变loss的大小
# 用于决定计算最终loss是除上batch_size还是除上正样本数量
#------------------------------------------------------#
normalize = False
#-------------------------------#
# 输入的shape大小
# 显存比较小可以使用416x416
# 显存比较大可以使用608x608
#-------------------------------#
input_shape = (416, 416)
#----------------------------------------------------#
# classes和anchor的路径,非常重要
# 训练前一定要修改classes_path,使其对应自己的数据集
#----------------------------------------------------#
anchors_path = 'model_data/yolo_anchors.txt'
classes_path = 'model_data/voc_classes.txt'
#----------------------------------------------------#
# 获取classes和anchor
#----------------------------------------------------#
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
num_classes = len(class_names)
#------------------------------------------------------#
# Yolov4的tricks应用
# mosaic 马赛克数据增强 True or False
# 实际测试时mosaic数据增强并不稳定,所以默认为False
# Cosine_scheduler 余弦退火学习率 True or False
# label_smoothing 标签平滑 0.01以下一般 如0.01、0.005
#------------------------------------------------------#
mosaic = False
Cosine_lr = False
smoooth_label = 0
#------------------------------------------------------#
# 创建yolo模型
# 训练前一定要修改classes_path和对应的txt文件
#------------------------------------------------------#
model = YoloBody(len(anchors[0]), num_classes)
#------------------------------------------------------#
# 权值文件请看README,百度网盘下载
#------------------------------------------------------#
# model_path = "model_data/yolo4_weights.pth" # yolov4.weights
model_path = "model_data/yolo4_weights.pth"
print('Loading weights into state dict...')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model_dict = model.state_dict()
pretrained_dict = torch.load(model_path, map_location=device)
pretrained_dict = {
k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print('Finished!')
net = model.train()
if Cuda:
net = torch.nn.DataParallel(model)
cudnn.benchmark = True
net = net.cuda()
# 建立loss函数
yolo_losses = []
for i in range(3):
yolo_losses.append(YOLOLoss(np.reshape(anchors,[-1,2]),num_classes, \
(input_shape[1], input_shape[0]), smoooth_label, Cuda, normalize))
#----------------------------------------------------#
# 获得图片路径和标签
#----------------------------------------------------#
annotation_path = '2007_train.txt'
#----------------------------------------------------------------------#
# 验证集的划分在train.py代码里面进行
# 2007_test.txt和2007_val.txt里面没有内容是正常的。训练不会使用到。
# 当前划分方式下,验证集和训练集的比例为1:9
#----------------------------------------------------------------------#
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
lr = 1e-3
Batch_size = 20
Init_Epoch = 0
Freeze_Epoch = 50
#----------------------------------------------------------------------------#
# 我在实际测试时,发现optimizer的weight_decay起到了反作用,
# 所以去除掉了weight_decay,大家也可以开起来试试,一般是weight_decay=5e-4
#----------------------------------------------------------------------------#
optimizer = optim.Adam(net.parameters(),lr)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.92)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic, is_train=True)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False, is_train=False)
gen = DataLoader(train_dataset, shuffle=True, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(train=True, mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(train=False, mosaic = mosaic)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 冻结一定部分训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = False
for epoch in range(Init_Epoch,Freeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Freeze_Epoch,Cuda)
lr_scheduler.step()
if True:
lr = 1e-4
Batch_size = 2
Freeze_Epoch = 50
Unfreeze_Epoch = 100
#----------------------------------------------------------------------------#
# 我在实际测试时,发现optimizer的weight_decay起到了反作用,
# 所以去除掉了weight_decay,大家也可以开起来试试,一般是weight_decay=5e-4
#----------------------------------------------------------------------------#
optimizer = optim.Adam(net.parameters(),lr)
if Cosine_lr:
lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
else:
lr_scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1,gamma=0.92)
if Use_Data_Loader:
train_dataset = YoloDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic, is_train=True)
val_dataset = YoloDataset(lines[num_train:], (input_shape[0], input_shape[1]), mosaic=False, is_train=False)
gen = DataLoader(train_dataset, shuffle=True, batch_size=Batch_size, num_workers=4, pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
gen_val = DataLoader(val_dataset, shuffle=True, batch_size=Batch_size, num_workers=4,pin_memory=True,
drop_last=True, collate_fn=yolo_dataset_collate)
else:
gen = Generator(Batch_size, lines[:num_train],
(input_shape[0], input_shape[1])).generate(train=True, mosaic = mosaic)
gen_val = Generator(Batch_size, lines[num_train:],
(input_shape[0], input_shape[1])).generate(train=False, mosaic = mosaic)
epoch_size = max(1, num_train//Batch_size)
epoch_size_val = num_val//Batch_size
#------------------------------------#
# 解冻后训练
#------------------------------------#
for param in model.backbone.parameters():
param.requires_grad = True
for epoch in range(Freeze_Epoch,Unfreeze_Epoch):
fit_one_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,gen_val,Unfreeze_Epoch,Cuda)
lr_scheduler.step()
别的也没啥说的
ok,那就这样吧~
欢迎各位大佬留言吐槽,也可以深入交流~