Leetcode - Scramble String

Leetcode - Scramble String_第1张图片
Screenshot from 2016-01-31 21:01:22.png

My code:

public class Solution {
    public boolean isScramble(String s1, String s2) {
        if (s1 == null || s2 == null)
            return false;
        else if (s1.length() != s2.length())
            return false;
        else if (!isSame(s1, s2))
            return false;
        else if (s1.equals(s2))
            return true;
        /** split string: [0, i), [i, s1.length()) */
        for (int i = 1; i < s1.length(); i++) {
            String s11 = s1.substring(0, i);
            String s12 = s1.substring(i, s1.length());
            String s21 = s2.substring(0, i);
            String s22 = s2.substring(i, s2.length());
            String s23 = s2.substring(s1.length() - i, s1.length());
            String s24 = s2.substring(0, s1.length() - i);
            if (isScramble(s11, s21) && isScramble(s12, s22))
                return true;
            if (isScramble(s11, s23) && isScramble(s12, s24))
                return true;
        }
        return false;
    }
    
    private boolean isSame(String s1, String s2) {
        char[] c1 = s1.toCharArray();
        char[] c2 = s2.toCharArray();
        Arrays.sort(c1);
        Arrays.sort(c2);
        s1 = new String(c1);
        s2 = new String(c2);
        return s1.equals(s2);
    }
}

这道题目我是没有思路的。看了答案之后才有了思路。
这个解法是暴力解法,具体复杂度是多少,我觉得是 2 ^ n
s1, s2, 如果从 i 处切开
那么就比较,
s1[0, i) with s2[0, i) and s1[i, len) with s2[i, len) 是否为scramble
然后这两个子串可以继续递归下去。
这是一种情况。
第二种情况,
s1[0, i) with s2[len - i, len) and s1[i, len) with s2[0, len - i) 是否为scramble
这两种情况只要有一种情况是scramble,就return true,否则return false
然后进一步递归下去。
复杂度个人估计,O(2 ^ n)

解法2,
Dynamic Programming
My code:

public class Solution {
    public boolean isScramble(String s1, String s2) {
        if (s1 == null || s2 == null)
            return false;
        else if (s1.length() != s2.length())
            return false;
        else if (!isSame(s1, s2))
            return false;
        else if (s1.equals(s2))
            return true;
        /** using dp 
         *  dp[i][j]][k] = 1 means s1.substring(i, i + k) and s2.substring(j, j + k) is scramble
         */
        int len = s1.length();
        int[][][] dp = new int[len][len][len + 1];
        /** for single character, if s1(i) == s2(j), then dp[i][j][1] = 1 */
        for (int i = 0; i < len; i++) {
            for (int j = 0; j < len; j++) {
                if (s1.charAt(i) == s2.charAt(j))
                    dp[i][j][1] = 1;
            }
        }
        /** start at i, j with len, split at k, 
         * if dp[i][j][k - i] && dp[k][j + k - i][len - (k - i)] is true
         * Or dp[i][j + len - (k - i)][k - i] && dp[k][j][len - (k - i)] is true
         * then dp[i][j][len] is true
         */
         for (int l = 2; l <= len; l++) {
             for (int i = 0; i <= len - l; i++) {
                 for (int j = 0; j <= len - l; j++) {
                     /** split at offset, i + offset, [i, offset), [i + offset, i + l) */
                     for (int offset = 1; offset < l; offset++) {
                         if (dp[i][j][offset] == 1 && dp[i + offset][j + offset][l - offset] == 1)
                            dp[i][j][l] = 1;
                        if (dp[i][j + l - offset][offset] == 1 && dp[i + offset][j][l - offset] == 1)
                            dp[i][j][l] = 1;
                     }
                 }
             }
         }
         return dp[0][0][len] == 1;
    }
    
    private boolean isSame(String s1, String s2) {
        char[] c1 = s1.toCharArray();
        char[] c2 = s2.toCharArray();
        Arrays.sort(c1);
        Arrays.sort(c2);
        s1 = new String(c1);
        s2 = new String(c2);
        return s1.equals(s2);
    }
}

这个解法的思路其实和解法1很类似,但是采用了dp
这也是我第一次意识到,dp到底是什么东西。
Dp就是一台机器,状态机。你给定,
初始状态,
一套状态跳转到下一个状态的规则。
然后让他运行。
固定次数后,出来的结果,或者说,模拟的结果,
就是你要的结果。
所以,dp的关键是,


  1. dp[][] 的物理意义,也有可能是三维数组
  2. 初始状态
  3. 状态间的转换规则

dp 的好处是,一旦你找到了这三个,那么,再难的题目,也可以在Np-complete的情况下完成。
但是,问题是,首先,很难抽象出dp的物理意义。
其次,无论情况多么简单,依然会用最复杂的dp去跑。也就是说,他的运行次数是固定的,不会中途结束或者跳一大段。

  1. Longest Palindromic Substring
    http://www.jianshu.com/p/4befb2f27ef1
    类似于这个,也是dp

greedy的话,就会根据具体情况具体分析,情况好的时候,会跑的很快,不会是一台规定不变的机器。

参考网页:
http://blog.csdn.net/ljiabin/article/details/44537523
http://www.jiuzhang.com/solutions/scramble-string/

Anyway, Good luck, Richardo!

My code:

public class Solution {
    /**
     * @param s1 A string
     * @param s2 Another string
     * @return whether s2 is a scrambled string of s1
     */
     
     private boolean checkScramble(String s1,int start1, String s2, int start2, int k, int [][][]visit) {
        if(visit[start1][start2][k] == 1)
            return true;
        if(visit[start1][start2][k] ==-1)
            return false;
        
        
        if (s1.length() != s2.length()) {
            visit[start1][start2][k] = -1;
            return false;
        }
        
        if (s1.length() == 0 || s1.equals(s2)) {
            visit[start1][start2][k] = 1;
            return true;
        }
        
        if (!isValid(s1, s2)) {
            visit[start1][start2][k] = -1;
            return false;
        }// Base Cases
        
        
        for (int i = 1; i < s1.length(); i++) {
            String s11 = s1.substring(0, i);
            String s12 = s1.substring(i, s1.length());
            
            String s21 = s2.substring(0, i);
            String s22 = s2.substring(i, s2.length());
            
            String s23 = s2.substring(0, s2.length() - i);
            String s24 = s2.substring(s2.length() - i, s2.length());
            
            if (checkScramble(s11,start1, s21, start2, i, visit) && checkScramble(s12, start1+i, s22, start2+i,k-i, visit))  {
                visit[start1][start2][k] = 1;
                return true;
            }
            
            if (checkScramble(s11,start1, s24, start2+k-i, i, visit) && checkScramble(s12,start1+i, s23,start2, k-i, visit))
            {
                visit[start1][start2][k] = 1;
                return true;
            }
        }
        visit[start1][start2][k] = -1;
        return false;
    }
    public boolean isScramble(String s1, String s2) {
        int len = s1.length();
        int [][][] visit = new int[len][len][len + 1];
        return checkScramble(s1,0,s2,0, len, visit);
    }
    
    
    private boolean isValid(String s1, String s2) {
        char[] arr1 = s1.toCharArray();
        char[] arr2 = s2.toCharArray();
        Arrays.sort(arr1);
        Arrays.sort(arr2);
        if (!(new String(arr1)).equals(new String(arr2))) {
            return false;
        }
        return true;
    }
}

reference:
http://www.jiuzhang.com/solutions/scramble-string/

算是 recursive DP + cache, 复杂度还是在 O(2 ^ n) 左右。
这道题目,加不加cache,最终的效果也差不多。

参考链接里,所谓的记忆化搜索,也不过是加了一层cache,
并没有彻底地改为: iteration DP

但是上面的第二种解法,正是iteration DP,三维的DP

说到底,这道题目还是算是 divide and conquer的一种变形。

Anyway, Good luck, Richardo! -- 08/24/2016

你可能感兴趣的:(Leetcode - Scramble String)