需要做一篇和玉米病害识别相关的论文,找了一些资料、数据集、代码。
在玉米病害识别中,有基于图像识别直接判断是否得病,还有基于环境因素判断玉米病害影响因素。
下面是两篇示例论文:
不同专业的研究者也从不同角度出发。
从拍摄玉米叶片照片的硬件设备,到玉米照片的叶片定位,基于机器学习的玉米病害识别,基于图像处理的玉米病害识别,开发应用平台,玉米病害视频的实时诊断。
在GitHub上搜索玉米病害,有搭建好的基于PlantVillage数据集的卷积神经网络实现玉米病害识别的源代码和处理好的数据集,数据集包括健康和大斑病、小斑病、玉米锈病四种图片,如下:
:https://github.com/xxl-seu/LeNet-based-Corn-leaf-disease-recognition
训练结果:
但这个代码中只有处理好的32*32的图片,无原图。
原图可在玉米生长状态下载,具体源数据在哪个网站搜索。
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense,LSTM,ConvLSTM2D
from keras import backend as K
import matplotlib.pyplot as plt
import time
start =time.time()
#导入数据
# 图像维度
img_width, img_height = 32, 32
train_data_dir = './train'
validation_data_dir = './test'
nb_train_samples = 2700
nb_validation_samples = 700
epochs = 135
batch_size = 20
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
# 创建模型
model = Sequential()
model.add(Conv2D(filters=6, kernel_size=(5, 5), padding='valid',input_shape=input_shape, activation='tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='valid', activation='tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(120, activation='tanh'))
model.add(Dense(84, activation='tanh'))
model.add(Dense(4, activation='softmax'))
#编译模型
model.compile(loss='categorical_crossentropy',
optimizer='sgd',
metrics=['accuracy'])
# 训练集图像增强
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# 测试集图像增强(only rescaling)
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical') # 多分类
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='categorical') # 多分类
#训练模型
history=model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
#图标说明
fig = plt.figure()#新建一张图
plt.plot(history.history['accuracy'],label='training acc')
plt.plot(history.history['val_accuracy'],label='val acc')
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(labels=['train','test'],loc='lower right')
fig.savefig('accuracy_epoch.jpg')
fig = plt.figure()
plt.plot(history.history['loss'],label='training loss')
plt.plot(history.history['val_loss'], label='val loss')
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(labels=['train','test'],loc='upper right')
fig.savefig('loss_epoch.jpg')
end= time.time()
print('Running time: %s Seconds'%(end-start))