这阵子做线结构光视觉检测(钢轨磨耗检测)项目的过程中,发现之前的许多知识点在逐渐遗忘,常言好记性不如烂笔头,故决定把项目中所用到的,把笔者认为有价值且对博友能够产生帮助的内容,记录分享于此。能力有限,如有纰漏,希望博友留下意见与建议。
磨耗检测项目中,配准阶段将结构光采集的数据集映射到标准廓形的数据集上,以识别其特征,进而计算分析。
其中,建立标准轨头廓形数据模型有两种方法,a)分段函数描述;b)三维模型转PCD(所选方案);
选定方案之后,查阅三维模型提取点云数据的相关资料时,发现在SolidWorks三维模型中提取生成点云数据的资料较少,且需要下载相关软件或配置需求过高。于是在笔者仔细查阅相关资料后,总结了一种较为方便且利于没有这方面基础的小白阅读完成。
结果显示,点云文件获取完毕
当前目录下生成60kg╱m钢轨-05.pcd的文件。下采样控制体素点距或投影模型等相关后续必要操作,标准点云模型满足需求。
如有不明白的地方,欢迎交流。
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
inline double
uniform_deviate (int seed)
{
double ran = seed * (1.0 / (RAND_MAX + 1.0));
return ran;
}
inline void
randomPointTriangle (float a1, float a2, float a3, float b1, float b2, float b3, float c1, float c2, float c3,
Eigen::Vector4f& p)
{
float r1 = static_cast<float> (uniform_deviate (rand ()));
float r2 = static_cast<float> (uniform_deviate (rand ()));
float r1sqr = sqrtf (r1);
float OneMinR1Sqr = (1 - r1sqr);
float OneMinR2 = (1 - r2);
a1 *= OneMinR1Sqr;
a2 *= OneMinR1Sqr;
a3 *= OneMinR1Sqr;
b1 *= OneMinR2;
b2 *= OneMinR2;
b3 *= OneMinR2;
c1 = r1sqr * (r2 * c1 + b1) + a1;
c2 = r1sqr * (r2 * c2 + b2) + a2;
c3 = r1sqr * (r2 * c3 + b3) + a3;
p[0] = c1;
p[1] = c2;
p[2] = c3;
p[3] = 0;
}
inline void
randPSurface (vtkPolyData * polydata, std::vector<double> * cumulativeAreas, double totalArea, Eigen::Vector4f& p)
{
float r = static_cast<float> (uniform_deviate (rand ()) * totalArea);
std::vector<double>::iterator low = std::lower_bound (cumulativeAreas->begin (), cumulativeAreas->end (), r);
vtkIdType el = vtkIdType (low - cumulativeAreas->begin ());
double A[3], B[3], C[3];
vtkIdType npts = 0;
vtkIdType *ptIds = NULL;
polydata->GetCellPoints (el, npts, ptIds);
polydata->GetPoint (ptIds[0], A);
polydata->GetPoint (ptIds[1], B);
polydata->GetPoint (ptIds[2], C);
randomPointTriangle (float (A[0]), float (A[1]), float (A[2]),
float (B[0]), float (B[1]), float (B[2]),
float (C[0]), float (C[1]), float (C[2]), p);
}
void
uniform_sampling (vtkSmartPointer<vtkPolyData> polydata, size_t n_samples, pcl::PointCloud<pcl::PointXYZ> & cloud_out)
{
polydata->BuildCells ();
vtkSmartPointer<vtkCellArray> cells = polydata->GetPolys ();
double p1[3], p2[3], p3[3], totalArea = 0;
std::vector<double> cumulativeAreas (cells->GetNumberOfCells (), 0);
size_t i = 0;
vtkIdType npts = 0, *ptIds = NULL;
for (cells->InitTraversal (); cells->GetNextCell (npts, ptIds); i++)
{
polydata->GetPoint (ptIds[0], p1);
polydata->GetPoint (ptIds[1], p2);
polydata->GetPoint (ptIds[2], p3);
totalArea += vtkTriangle::TriangleArea (p1, p2, p3);
cumulativeAreas[i] = totalArea;
}
cloud_out.points.resize (n_samples);
cloud_out.width = static_cast<uint32_t> (n_samples);
cloud_out.height = 1;
for (i = 0; i < n_samples; i++)
{
Eigen::Vector4f p;
randPSurface (polydata, &cumulativeAreas, totalArea, p);
cloud_out.points[i].x = p[0];
cloud_out.points[i].y = p[1];
cloud_out.points[i].z = p[2];
}
}
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
int default_number_samples = 100000;
float default_leaf_size = 0.01f;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.{ply,obj} output.pcd \n" , argv[0]);
print_info (" where options are:\n");
print_info (" -n_samples X = number of samples (default: ");
print_value ("%d", default_number_samples);
print_info (")\n");
print_info (
" -leaf_size X = the XYZ leaf size for the VoxelGrid -- for data reduction (default: ");
print_value ("%f", default_leaf_size);
print_info (" m)\n");
}
/* ---[ */
int
main (int argc, char **argv)
{
print_info ("Convert a CAD model to a point cloud using uniform sampling. For more information, use: %s -h\n",
argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
// Parse command line arguments
int SAMPLE_POINTS_ = default_number_samples;
parse_argument (argc, argv, "-n_samples", SAMPLE_POINTS_);
float leaf_size = default_leaf_size;
parse_argument (argc, argv, "-leaf_size", leaf_size);
// Parse the command line arguments for .ply and PCD files
std::vector<int> pcd_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (pcd_file_indices.size () != 1)
{
print_error ("Need a single output PCD file to continue.\n");
return (-1);
}
std::vector<int> ply_file_indices = parse_file_extension_argument (argc, argv, ".ply");
std::vector<int> obj_file_indices = parse_file_extension_argument (argc, argv, ".obj");
if (ply_file_indices.size () != 1 && obj_file_indices.size () != 1)
{
print_error ("Need a single input PLY/OBJ file to continue.\n");
return (-1);
}
vtkSmartPointer<vtkPolyData> polydata1;
if (ply_file_indices.size () == 1)
{
vtkSmartPointer<vtkPLYReader> readerQuery = vtkSmartPointer<vtkPLYReader>::New ();
readerQuery->SetFileName (argv[ply_file_indices[0]]);
}
else if (obj_file_indices.size () == 1)
{
vtkSmartPointer<vtkOBJReader> readerQuery = vtkSmartPointer<vtkOBJReader>::New ();
readerQuery->SetFileName (argv[obj_file_indices[0]]);
polydata1 = readerQuery->GetOutput ();
polydata1->Update ();
}
//make sure that the polygons are triangles!
vtkSmartPointer<vtkTriangleFilter> triangleFilter = vtkSmartPointer<vtkTriangleFilter>::New ();
triangleFilter->SetInput (polydata1);
triangleFilter->Update ();
vtkSmartPointer<vtkPolyDataMapper> triangleMapper = vtkSmartPointer<vtkPolyDataMapper>::New ();
triangleMapper->SetInputConnection (triangleFilter->GetOutputPort ());
triangleMapper->Update();
polydata1 = triangleMapper->GetInput();
polydata1->Update ();
bool INTER_VIS = false;
bool VIS = true;
if (INTER_VIS)
{
visualization::PCLVisualizer vis;
vis.addModelFromPolyData (polydata1, "mesh1", 0);
vis.setRepresentationToSurfaceForAllActors ();
vis.spin();
}
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_1 (new pcl::PointCloud<pcl::PointXYZ>);
uniform_sampling (polydata1, SAMPLE_POINTS_, *cloud_1);
if (INTER_VIS)
{
visualization::PCLVisualizer vis_sampled;
vis_sampled.addPointCloud (cloud_1);
vis_sampled.spin ();
}
// Voxelgrid
VoxelGrid<PointXYZ> grid_;
grid_.setInputCloud (cloud_1);
grid_.setLeafSize (leaf_size, leaf_size, leaf_size);
grid_.filter (*cloud_1);
if (VIS)
{
visualization::PCLVisualizer vis3 ("VOXELIZED SAMPLES CLOUD");
vis3.addPointCloud (cloud_1);
vis3.spin ();
}
savePCDFileASCII (argv[pcd_file_indices[0]], *cloud_1);
}