基于RNN(二)唐诗生成

  1. 本篇博文就是手写数字识别的一个升级版本,天天手写数字都厌烦了,索性在网上找了个有趣的例程唐诗生成.
  2. 本博文是学完RNN的一个小练习,读懂全部程序你会对LSTM有更深的理解.

参考:

基于RNN中文古诗词神经网络实现

写诗机器人tensorflow实现

唐迪宇-唐诗生成器

......

先看结果:

'''
求得能名及八鹦,把盘犹舒热龙鳞。
赞娟从荀绕苔寝,唯有泉声细洞房。
求耕遐老数三秦,岂汝百骢滤自能。
关朝酒别词堪愁,愁向长云寄白头。
注农满映云满嫌,此翩逼时朝方清。
'''

网络流程:

  1. 收集唐诗数据-->>点击下载
  2. 分析数据-->>生成词向量
  3. 生成get_batch函数
  4. 批量对诗进行训练
  5. 确保精度 / 保存模型
  6. 生成唐诗(隐含诗)

特殊说明:

生成词向量会略去很少的生僻字

数据缺失进行填充

批量训练对长短不齐的诗进行补全,以长的为标准

生成诗的过程使用了随机性random ,如果不适用随机性那么每次生成的诗都一样.源程序对概率大的诗进行了保留大概率,下图简单说明以下:

基于RNN(二)唐诗生成_第1张图片
概率to词

对于生成五言和七言诗有缺陷,得一直达到要求才可以返回

if len(sentence) == 2 + 2 * type:
    sentence += u'\n'
    poem += sentence
    flag = False

代码:

#这里就不放代码了,那么多代码,我不信你在微信上面看完!!!还是点击后面的阅读全文进行观察吧~~
#!/usr/bin/python3
# -*- coding: UTF-8 -*-
import collections
import numpy as np
import tensorflow as tf
import os

#os.environ["CUDA_VISIBLE_DEVICES"] = "0"#设置GPU为gtx1060
'''
author: log16
Data: 2017/5/4
'''
# -------------------------------数据预处理---------------------------#

poetry_file = os.getcwd()+'/poetry.txt'

# 诗集
poetrys = []
with open(poetry_file, "r") as f:
    for line in f:
        try:
            #line = line.decode('UTF-8')
            line = line.strip(u'\n')
            title, content = line.strip(u' ').split(u':')
            content = content.replace(u' ', u'')
            if u'_' in content or u'(' in content or u'(' in content or u'《' in content or u'[' in content:
                continue
            if len(content) < 5 or len(content) > 79:
                continue
            content = u'[' + content + u']'
            poetrys.append(content)
        except Exception as e:
            pass

        # 按诗的字数排序
poetrys = sorted(poetrys, key=lambda line: len(line))
print('唐诗总数: ', len(poetrys))

# 统计每个字出现次数
all_words = []
for poetry in poetrys:
    all_words += [word for word in poetry]
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)

# 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word_num_map = dict(zip(words, range(len(words))))
#word_num_map = sorted(word_num_map.items(),key=lambda x:x[1],reverse=True)
# 把诗转换为向量形式
to_num = lambda word: word_num_map.get(word, len(words))
poetrys_vector = [list(map(to_num, poetry)) for poetry in poetrys]
# [[314, 3199, 367, 1556, 26, 179, 680, 0, 3199, 41, 506, 40, 151, 4, 98, 1],
# [339, 3, 133, 31, 302, 653, 512, 0, 37, 148, 294, 25, 54, 833, 3, 1, 965, 1315, 377, 1700, 562, 21, 37, 0, 2, 1253, 21, 36, 264, 877, 809, 1]
# ....]

# 每次取64首诗进行训练
batch_size = 64
n_chunk = len(poetrys_vector) // batch_size

#利用序列对原始数据进行随机化的抽取batch和enpoch
class DataSet(object):
    def __init__(self, data_size):
        self._data_size = data_size
        self._epochs_completed = 0#epoch次数 = n*batch//data_size
        self._index_in_epoch = 0#batch数量 = n*batch
        self._data_index = np.arange(data_size)#下标索引

    def next_batch(self, batch_size):
        start = self._index_in_epoch
        if start + batch_size > self._data_size:
            np.random.shuffle(self._data_index)#打乱数据索引
            self._epochs_completed = self._epochs_completed + 1
            self._index_in_epoch = batch_size
            full_batch_features, full_batch_labels = self.data_batch(0, batch_size)
            return full_batch_features, full_batch_labels
        else:
            self._index_in_epoch += batch_size
            end = self._index_in_epoch
            full_batch_features, full_batch_labels = self.data_batch(start, end)
            if self._index_in_epoch == self._data_size:
                self._index_in_epoch = 0
                self._epochs_completed = self._epochs_completed + 1
                np.random.shuffle(self._data_index)
            return full_batch_features, full_batch_labels

    def data_batch(self, start, end):
        batches  = []
        for i in range(start, end):
            batches.append(poetrys_vector[self._data_index[i]])

        length = max(map(len, batches))#求取batch的最大一个的长度
        #------以最长的一个数据为基础,其它的用" "空格去补全
        xdata = np.full((end - start, length), word_num_map[' '], np.int32)
        for row in range(end - start):
            xdata[row, :len(batches[row])] = batches[row]
        ydata = np.copy(xdata)
        ydata[:, :-1] = xdata[:, 1:]#标签对应着xdata的下一个序列
        return xdata, ydata


# ---------------------------------------RNN--------------------------------------#

input_data = tf.placeholder(tf.int32, [batch_size, None])
output_targets = tf.placeholder(tf.int32, [batch_size, None])


# 定义RNN
def neural_network(model='lstm', rnn_size=128, num_layers=2):
    if model == 'rnn':
        cell_fun = tf.nn.rnn_cell.BasicRNNCell
    elif model == 'gru':
        cell_fun = tf.nn.rnn_cell.GRUCell
    elif model == 'lstm':
        cell_fun = tf.nn.rnn_cell.BasicLSTMCell

    cell = cell_fun(rnn_size, state_is_tuple=True)#创建一个LSTM单元
    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)#LSTM层数

    initial_state = cell.zero_state(batch_size, tf.float32)

    with tf.variable_scope('rnnlm'):
        softmax_w = tf.get_variable("softmax_w", [rnn_size, len(words)])
        softmax_b = tf.get_variable("softmax_b", [len(words)])
        with tf.device("/gpu:0"):
            #这里会在文章单独解释
            embedding = tf.get_variable("embedding", [len(words), rnn_size])
            inputs = tf.nn.embedding_lookup(embedding, input_data)

    outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, scope='rnnlm')
    output = tf.reshape(outputs, [-1, rnn_size])

    logits = tf.matmul(output, softmax_w) + softmax_b
    probs = tf.nn.softmax(logits)
    return logits, last_state, probs, cell, initial_state


def load_model(sess, saver, ckpt_path):
    latest_ckpt = tf.train.latest_checkpoint(ckpt_path)#得到最后一次保存的模型
    if latest_ckpt:
        print('resume from', latest_ckpt)
        saver.restore(sess, latest_ckpt)
        return int(latest_ckpt[latest_ckpt.rindex('-') + 1:])
    else:
        print('building model from scratch')
        sess.run(tf.global_variables_initializer())
        return -1


# 训练
def train_neural_network():
    logits, last_state, _, _, _ = neural_network()
    targets = tf.reshape(output_targets, [-1])
    loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example([logits], [targets], [tf.ones_like(targets, dtype=tf.float32)],
                                                  len(words))
    cost = tf.reduce_mean(loss)
    learning_rate = tf.Variable(0.0, trainable=False)
    tvars = tf.trainable_variables()
    grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars), 5)#防止梯度爆炸,在其中设置的一个参考
    # optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    optimizer = tf.train.AdamOptimizer(learning_rate)
    #因为这里不是直接优化损失函数,优化的是梯度值,所以得更新梯度
    train_op = optimizer.apply_gradients(zip(grads, tvars))#对梯度进行更新

    trainds = DataSet(len(poetrys_vector))
    x, y = trainds.next_batch(batch_size)

    #GPU设置为按需增长,且最大占用90%
    config = tf.ConfigProto(allow_soft_placement=True)
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.9)
    config.gpu_options.allow_growth = True

    with tf.Session(config=config) as sess:
        with tf.device('/gpu:0'):#使用os模块设置GPU
            sess.run(tf.global_variables_initializer())

            saver = tf.train.Saver(tf.all_variables())
            last_epoch = load_model(sess, saver, 'model/')

            for epoch in range(last_epoch + 1, 100):
                sess.run(tf.assign(learning_rate, 0.002 * (0.97 ** epoch)))#不断更新学习率
                # sess.run(tf.assign(learning_rate, 0.01))

                all_loss = 0.0
                for batche in range(n_chunk):
                    x, y = trainds.next_batch(batch_size)
                    train_loss, _, _ = sess.run([cost, last_state, train_op],
                                                feed_dict={input_data: x, output_targets: y})

                    all_loss = all_loss + train_loss

                    if batche % 50 == 1:
                        # print(epoch, batche, 0.01,train_loss)
                        print(epoch, batche, 0.002 * (0.97 ** epoch), train_loss)

                saver.save(sess, 'model/poetry.module', global_step=epoch)
                print(epoch, ' Loss: ', all_loss * 1.0 / n_chunk)


train_neural_network()

#!/usr/bin/python3
# -*- coding: UTF-8 -*-
import collections
import numpy as np
import tensorflow as tf

'''
This one will produce a poetry 
author: log16
Date: 2017/5/4

'''
# -------------------------------数据预处理---------------------------#

poetry_file = 'poetry.txt'

# 诗集
poetrys = []
with open(poetry_file, "r") as f:
    for line in f:
        try:
            #line = line.decode('UTF-8')
            line = line.strip(u'\n')
            title, content = line.strip(u' ').split(u':')
            content = content.replace(u' ', u'')
            if u'_' in content or u'(' in content or u'(' in content or u'《' in content or u'[' in content:
                continue
            if len(content) < 5 or len(content) > 79:
                continue
            content = u'[' + content + u']'
            poetrys.append(content)
        except Exception as e:
            pass

        # 按诗的字数排序
poetrys = sorted(poetrys, key=lambda line: len(line))
print('唐诗总数: ', len(poetrys))

# 统计每个字出现次数
all_words = []
for poetry in poetrys:
    all_words += [word for word in poetry]
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)

# 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word_num_map = dict(zip(words, range(len(words))))
# 把诗转换为向量形式,参考TensorFlow练习1
to_num = lambda word: word_num_map.get(word, len(words))
poetrys_vector = [list(map(to_num, poetry)) for poetry in poetrys]
# [[314, 3199, 367, 1556, 26, 179, 680, 0, 3199, 41, 506, 40, 151, 4, 98, 1],
# [339, 3, 133, 31, 302, 653, 512, 0, 37, 148, 294, 25, 54, 833, 3, 1, 965, 1315, 377, 1700, 562, 21, 37, 0, 2, 1253, 21, 36, 264, 877, 809, 1]
# ....]

# 每次取64首诗进行训练
batch_size = 1
n_chunk = len(poetrys_vector) // batch_size


class DataSet(object):
    def __init__(self, data_size):
        self._data_size = data_size
        self._epochs_completed = 0
        self._index_in_epoch = 0
        self._data_index = np.arange(data_size)

    def next_batch(self, batch_size):
        start = self._index_in_epoch
        if start + batch_size > self._data_size:
            np.random.shuffle(self._data_index)
            self._epochs_completed = self._epochs_completed + 1
            self._index_in_epoch = batch_size
            full_batch_features, full_batch_labels = self.data_batch(0, batch_size)
            return full_batch_features, full_batch_labels
        else:
            self._index_in_epoch += batch_size
            end = self._index_in_epoch
            full_batch_features, full_batch_labels = self.data_batch(start, end)
            if self._index_in_epoch == self._data_size:
                self._index_in_epoch = 0
                self._epochs_completed = self._epochs_completed + 1
                np.random.shuffle(self._data_index)
            return full_batch_features, full_batch_labels

    def data_batch(self, start, end):
        batches = []
        for i in range(start, end):
            batches.append(poetrys_vector[self._data_index[i]])

        length = max(map(len, batches))

        xdata = np.full((end - start, length), word_num_map[' '], np.int32)
        for row in range(end - start):
            xdata[row, :len(batches[row])] = batches[row]
        ydata = np.copy(xdata)
        ydata[:, :-1] = xdata[:, 1:]
        return xdata, ydata


# ---------------------------------------RNN--------------------------------------#

input_data = tf.placeholder(tf.int32, [batch_size, None])
output_targets = tf.placeholder(tf.int32, [batch_size, None])


# 定义RNN
def neural_network(model='lstm', rnn_size=128, num_layers=2):
    if model == 'rnn':
        cell_fun = tf.nn.rnn_cell.BasicRNNCell
    elif model == 'gru':
        cell_fun = tf.nn.rnn_cell.GRUCell
    elif model == 'lstm':
        cell_fun = tf.nn.rnn_cell.BasicLSTMCell

    cell = cell_fun(rnn_size, state_is_tuple=True)
    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)

    initial_state = cell.zero_state(batch_size, tf.float32)

    with tf.variable_scope('rnnlm'):
        softmax_w = tf.get_variable("softmax_w", [rnn_size, len(words)])
        softmax_b = tf.get_variable("softmax_b", [len(words)])
        with tf.device("/cpu:0"):
            embedding = tf.get_variable("embedding", [len(words), rnn_size])
            inputs = tf.nn.embedding_lookup(embedding, input_data)

    outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, scope='rnnlm')
    output = tf.reshape(outputs, [-1, rnn_size])

    logits = tf.matmul(output, softmax_w) + softmax_b
    probs = tf.nn.softmax(logits)
    return logits, last_state, probs, cell, initial_state


# -------------------------------生成古诗---------------------------------#
# 使用训练完成的模型

def gen_poetry():
    def to_word(weights):
        t = np.cumsum(weights)
        test = sorted(t)
        s = np.sum(weights)
        sample = int(np.searchsorted(t, np.random.rand(1) * s))
        return words[sample]

    _, last_state, probs, cell, initial_state = neural_network()
    Session_config = tf.ConfigProto(allow_soft_placement=True)
    Session_config.gpu_options.allow_growth = True

    with tf.Session(config=Session_config) as sess:
        with tf.device('/gpu:0'):
            sess.run(tf.global_variables_initializer())

            saver = tf.train.Saver(tf.all_variables())
            saver.restore(sess, 'model/poetry.module-99')

            state_ = sess.run(cell.zero_state(1, tf.float32))

            x = np.array([list(map(word_num_map.get, '['))])
            [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
            #word = to_word(probs_)
            word = words[np.argmax(probs_)]
            poem = ''
            while word != ']':
                poem += word
                x = np.zeros((1, 1))
                x[0, 0] = word_num_map[word]
                [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
                word = to_word(probs_)
                #word = words[np.argmax(probs_)]
            return poem


print(gen_poetry())

#!/usr/bin/python3
# -*- coding: UTF-8 -*-
import collections
import numpy as np
import tensorflow as tf

'''
This one will produce a poetry with heads.
author: log16
Data: 2017/5/4
'''

# -------------------------------数据预处理---------------------------#

poetry_file = 'poetry.txt'

# 诗集
poetrys = []
with open(poetry_file, "r") as f:
    for line in f:
        try:
            #line = line.decode('UTF-8')
            line = line.strip(u'\n')
            title, content = line.strip(u' ').split(u':')
            content = content.replace(u' ', u'')
            if u'_' in content or u'(' in content or u'(' in content or u'《' in content or u'[' in content:
                continue
            if len(content) < 5 or len(content) > 79:
                continue
            content = u'[' + content + u']'
            poetrys.append(content)
        except Exception as e:
            pass

        # 按诗的字数排序
poetrys = sorted(poetrys, key=lambda line: len(line))
print('唐诗总数: ', len(poetrys))

# 统计每个字出现次数
all_words = []
for poetry in poetrys:
    all_words += [word for word in poetry]
counter = collections.Counter(all_words)
count_pairs = sorted(counter.items(), key=lambda x: -x[1])
words, _ = zip(*count_pairs)

# 取前多少个常用字
words = words[:len(words)] + (' ',)
# 每个字映射为一个数字ID
word_num_map = dict(zip(words, range(len(words))))
# 把诗转换为向量形式,参考TensorFlow练习1
to_num = lambda word: word_num_map.get(word, len(words))
poetrys_vector = [list(map(to_num, poetry)) for poetry in poetrys]
# [[314, 3199, 367, 1556, 26, 179, 680, 0, 3199, 41, 506, 40, 151, 4, 98, 1],
# [339, 3, 133, 31, 302, 653, 512, 0, 37, 148, 294, 25, 54, 833, 3, 1, 965, 1315, 377, 1700, 562, 21, 37, 0, 2, 1253, 21, 36, 264, 877, 809, 1]
# ....]

# 每次取64首诗进行训练
batch_size = 1
n_chunk = len(poetrys_vector) // batch_size


class DataSet(object):
    def __init__(self, data_size):
        self._data_size = data_size
        self._epochs_completed = 0
        self._index_in_epoch = 0
        self._data_index = np.arange(data_size)

    def next_batch(self, batch_size):
        start = self._index_in_epoch
        if start + batch_size > self._data_size:
            np.random.shuffle(self._data_index)
            self._epochs_completed = self._epochs_completed + 1
            self._index_in_epoch = batch_size
            full_batch_features, full_batch_labels = self.data_batch(0, batch_size)
            return full_batch_features, full_batch_labels
        else:
            self._index_in_epoch += batch_size
            end = self._index_in_epoch
            full_batch_features, full_batch_labels = self.data_batch(start, end)
            if self._index_in_epoch == self._data_size:
                self._index_in_epoch = 0
                self._epochs_completed = self._epochs_completed + 1
                np.random.shuffle(self._data_index)
            return full_batch_features, full_batch_labels

    def data_batch(self, start, end):
        batches = []
        for i in range(start, end):
            batches.append(poetrys_vector[self._data_index[i]])

        length = max(map(len, batches))

        xdata = np.full((end - start, length), word_num_map[' '], np.int32)
        for row in range(end - start):
            xdata[row, :len(batches[row])] = batches[row]
        ydata = np.copy(xdata)
        ydata[:, :-1] = xdata[:, 1:]
        return xdata, ydata


# ---------------------------------------RNN--------------------------------------#

input_data = tf.placeholder(tf.int32, [batch_size, None])
output_targets = tf.placeholder(tf.int32, [batch_size, None])


# 定义RNN
def neural_network(model='lstm', rnn_size=128, num_layers=2):
    if model == 'rnn':
        cell_fun = tf.nn.rnn_cell.BasicRNNCell
    elif model == 'gru':
        cell_fun = tf.nn.rnn_cell.GRUCell
    elif model == 'lstm':
        cell_fun = tf.nn.rnn_cell.BasicLSTMCell

    cell = cell_fun(rnn_size, state_is_tuple=True)
    cell = tf.nn.rnn_cell.MultiRNNCell([cell] * num_layers, state_is_tuple=True)

    initial_state = cell.zero_state(batch_size, tf.float32)

    with tf.variable_scope('rnnlm'):
        softmax_w = tf.get_variable("softmax_w", [rnn_size, len(words)])
        softmax_b = tf.get_variable("softmax_b", [len(words)])
        with tf.device("/cpu:0"):
            embedding = tf.get_variable("embedding", [len(words), rnn_size])
            inputs = tf.nn.embedding_lookup(embedding, input_data)

    outputs, last_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state, scope='rnnlm')
    output = tf.reshape(outputs, [-1, rnn_size])

    logits = tf.matmul(output, softmax_w) + softmax_b
    probs = tf.nn.softmax(logits)
    return logits, last_state, probs, cell, initial_state


# -------------------------------生成古诗---------------------------------#
# 使用训练完成的模型

def gen_head_poetry(heads, type):
    if type != 5 and type != 7:
        print
        'The second para has to be 5 or 7!'
        return

    def to_word(weights):
        t = np.cumsum(weights)
        s = np.sum(weights)
        sample = int(np.searchsorted(t, np.random.rand(1) * s))
        return words[sample]

    _, last_state, probs, cell, initial_state = neural_network()
    Session_config = tf.ConfigProto(allow_soft_placement=True)
    Session_config.gpu_options.allow_growth = True

    with tf.Session(config=Session_config) as sess:
        with tf.device('/gpu:0'):

            sess.run(tf.global_variables_initializer())

            saver = tf.train.Saver(tf.global_variables())
            saver.restore(sess, 'model/poetry.module-99')
            poem = ''
            for head in heads:
                flag = True
                while flag:

                    state_ = sess.run(cell.zero_state(1, tf.float32))

                    x = np.array([list(map(word_num_map.get, u'['))])
                    [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})

                    sentence = head

                    x = np.zeros((1, 1))
                    x[0, 0] = word_num_map[sentence]
                    [probs_, state_] = sess.run([probs, last_state], feed_dict={input_data: x, initial_state: state_})
                    word = to_word(probs_)
                    sentence += word

                    while word != u'。':
                        x = np.zeros((1, 1))
                        x[0, 0] = word_num_map[word]
                        [probs_, state_] = sess.run([probs, last_state],
                                                    feed_dict={input_data: x, initial_state: state_})
                        word = to_word(probs_)
                        sentence += word

                    if len(sentence) == 2 + 2 * type:
                        sentence += u'\n'
                        poem += sentence
                        flag = False

            return poem


print(gen_head_poetry(u'求赞求关注', 7))

你可能感兴趣的:(基于RNN(二)唐诗生成)