数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码

文章目录

      • 如何理解“贪心算法”?
      • 贪心算法实战分析
        • 1. 分糖果
        • 2. 钱币找零
        • 3.区间覆盖
      • 解答开篇
      • 内容小结
      • 课后思考

贪心算法(greedy algorithm),有很多经典的应用,比如霍夫曼编码(Huffman Coding)、Prim 和 Kruskal 最小生成树算法、还有 Dijkstra 单源最短路径算法。最小生成树算法和最短路径算法后面会讲到,所以今天讲下霍夫曼编码,看看它是如何利用贪心算法来实现对数据压缩编码,有效节省数据存储空间的。

如何理解“贪心算法”?

关于贪心算法,先看一个例子。

假设有一个可以容纳 100kg 物品的背包,可以装各种物品。我们有以下 5 种豆子,每种豆子的总量和总价值都各不相同。为了让背包中所装物品的总价值最大,如何选择在背包中装哪些豆子?每种豆子又该装多少呢?

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第1张图片

实际上,这个问题很简单,只要先算一算每个物品的单价,按照单价由高到低依次来装就好了。单价从高到低排列,依次是:黑豆、绿豆、红豆、青豆、黄豆,所以,可以往背包里装 20kg 黑豆、30kg 绿豆、50kg 红豆。

这个问题的解决思路显而易见,本质上借助的就是贪心算法。结合这个例子,总结一下贪心算法解决问题的步骤:

第一步,当看到这类问题的时候,首先要联想到贪心算法:针对一组数据,定义限制值和期望值,希望从中选出部分数据,在满足限制值的情况下,期望值最大

类比刚刚的例子,限制值就是重量不能超过 100kg,期望值就是物品总价值。这组数据就是 5 种豆子。我们从中选出一部分,满足重量不超过 100kg,并且总价值最大。

第二步,尝试看这个问题是否可以用贪心算法解决:每次选择当前情况下,在对限制值同等贡献量的情况下,对期望值贡献最大的数据。

第三步,举几个例子看下贪心算法产生的结果是否是最优的。大部分情况下,举几个例子验证一下就可以了。严格地证明贪心算法的正确性,是非常复杂的,需要涉及比较多的数学推理。而且,从实践的角度来说,大部分能用贪心算法解决的问题,贪心算法的正确性都是显而易见的,也不需要严格的数学推导证明。

实际上,用贪心算法解决问题的思路,并不总能给出最优解

举个例子,在一个有权图中,从顶点 S 开始,找一条到顶点 T 的最短路径(路径中边的权值和最小)。贪心算法的解决思路是,每次都选择一条跟当前顶点相连的权最小的边,直到找到顶点 T。按照这种思路,我们求出的最短路径是 S->A->E->T,路径长度是 1+4+4=9。

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第2张图片
但是,这种贪心的选择方式,最终求的路径并不是最短路径,因为路径 S->B->D->T 才是最短路径,因为这条路径的长度是 2+2+2=6。为什么贪心算法在这个问题上不工作了呢?

在这个问题上,贪心算法不工作的主要原因是,前面的选择,会影响后面的选择。如果我们第一步从顶点 S 走到顶点 A,那接下来面对的顶点和边,跟第一步从顶点 S 走到顶点 B,是完全不同的。所以,即便我们第一步选择最优的走法(边最短),但有可能因为这一步选择,导致后面每一步的选择都很糟糕,最终也就无缘全局最优解了

贪心算法实战分析

掌握贪心算法的关键是多练习,只要多练习几道题,自然就有感觉了。

1. 分糖果

有 m 个糖果和 n 个孩子,现在要把糖果分给这些孩子吃,但是糖果少,孩子多(m

每个糖果的大小不等,m 个糖果的大小分别是 s1,s2,s3,……,sm。此外,每个孩子对糖果大小的需求也不一样,只有糖果的大小大于等于孩子的对糖果大小的需求的时候,孩子才得到满足。假设这 n 个孩子对糖果大小的需求分别是 g1,g2,g3,……,gn

如何分配糖果,能尽可能满足最多数量的孩子?

可以把这个问题抽象成,从 n 个孩子中,抽取一部分孩子分配糖果,让满足的孩子的个数(期望值)是最大的。这个问题的限制值就是糖果个数 m

现在来看看如何用贪心算法来解决。对于一个孩子来说,如果小的糖果可以满足,就没必要用更大的糖果,这样更大的就可以留给其他对糖果大小需求更大的孩子。另一方面,对糖果大小需求小的孩子更容易被满足,所以,我们可以从需求小的孩子开始分配糖果。因为满足一个需求大的孩子跟满足一个需求小的孩子,对我们期望值的贡献是一样的

我们每次从剩下的孩子中,找出对糖果大小需求最小的,然后发给他剩下的糖果中能满足他的最小的糖果,这样得到的分配方案,也就是满足的孩子个数最多的方案。

2. 钱币找零

这个问题在日常生活中更加普遍。假设有 1 元、2 元、5 元、10 元、20 元、50 元、100 元这些面额的纸币,它们的张数分别是 c1、c2、c5、c10、c20、c50、c100。现在要用这些钱来支付 K 元,最少要用多少张纸币呢?

在生活中,我们肯定是先用面值最大的来支付,如果不够,就继续用更小一点面值的,以此类推,最后剩下的用 1 元来补齐。

贡献相同期望值(纸币数目)的情况下,希望多贡献点金额,这样就可以让纸币数更少,这就是一种贪心算法的解决思路。直觉告诉我们,这种处理方法就是最好的。实际上,要严谨地证明这种贪心算法的正确性,需要比较复杂的、有技巧的数学推导,我不建议你花太多时间在上面,不过如果感兴趣的话,可以自己去研究下。

3.区间覆盖

假设有 n 个区间,区间的起始端点和结束端点分别是[l1, r1],[l2, r2],[l3, r3],……,[ln, rn]。从这 n 个区间中选出一部分区间,这部分区间满足两两不相交(端点相交的情况不算相交),最多能选出多少个区间呢?

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第3张图片

这个问题的处理思路稍微不那么好懂,不过,建议你最好能弄懂,因为这个处理思想在很多贪心算法问题中都有用到,比如任务调度、教师排课等等问题。

这个问题的解决思路是这样的:假设这 n 个区间中最左端点是 lmin,最右端点是 rmax。这个问题就相当于,我们选择几个不相交的区间,从左到右将[lmin, rmax]覆盖上。按照起始端点从小到大的顺序对这 n 个区间排序。

每次选择的时候,选左端点跟前面的已经覆盖的区间不重合的(限制条件),右端点又尽量小的,这样可以让剩下的未覆盖区间尽可能的大,就可以放置更多的区间。这实际上就是一种贪心的选择方法。

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第4张图片

解答开篇

如何用贪心算法实现霍夫曼编码?

假设有一个包含 1000 个字符的文件,每个字符占 1 个 byte(1byte=8bits),存储这 1000 个字符就一共需要 8000bits,那有没有更加节省空间的存储方式呢?

假设通过统计分析发现,这 1000 个字符中只包含 6 种不同字符,假设它们分别是 a、b、c、d、e、f。而 3 个二进制位(bit)就可以表示 8 个不同的字符,所以,为了尽量减少存储空间,每个字符我们用 3 个二进制位来表示。那存储这 1000 个字符只需要 3000bits 就可以了,比原来的存储方式节省了很多空间。不过,还有没有更加节省空间的存储方式呢?

a(000)、b(001)、c(010)、d(011)、e(100)、f(101)

霍夫曼编码就要登场了。霍夫曼编码是一种十分有效的编码方法,广泛用于数据压缩中,其压缩率通常在 20%~90% 之间。

霍夫曼编码不仅会考察文本中有多少个不同字符,还会考察每个字符出现的频率,根据频率的不同,选择不同长度的编码。霍夫曼编码试图用这种不等长的编码方法,来进一步增加压缩的效率。如何给不同频率的字符选择不同长度的编码呢?根据贪心的思想,可以把出现频率比较多的字符,用稍微短一些的编码;出现频率比较少的字符,用稍微长一些的编码

对于等长的编码来说,解压缩起来很简单。比如刚才那个例子中,用 3 个 bit 表示一个字符。在解压缩的时候,我们每次从文本中读取 3 位二进制码,然后翻译成对应的字符。但是,霍夫曼编码是不等长的,每次应该读取 1 位还是 2 位、3 位等等来解压缩呢?这个问题就导致霍夫曼编码解压缩起来比较复杂。为了避免解压缩过程中的歧义,霍夫曼编码要求各个字符的编码之间,不会出现某个编码是另一个编码前缀的情况

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第5张图片

假设这 6 个字符出现的频率从高到低依次是 a、b、c、d、e、f。把它们编码下面这个样子,任何一个字符的编码都不是另一个的前缀,在解压缩的时候,我们每次会读取尽可能长的可解压的二进制串,所以在解压缩的时候也不会歧义。经过这种编码压缩之后,这 1000 个字符只需要 2100bits 就可以了。

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第6张图片
尽管霍夫曼编码的思想并不难理解,但是如何根据字符出现频率的不同,给不同的字符进行不同长度的编码呢?这里的处理稍微有些技巧。

把每个字符看作一个节点,并且附带着把频率放到优先级队列中。我们从队列中取出频率最小的两个节点 A、B,然后新建一个节点 C,把频率设置为两个节点的频率之和,并把这个新节点 C 作为节点 A、B 的父节点。最后再把 C 节点放入到优先级队列中。重复这个过程,直到队列中没有数据。

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第7张图片
现在,给每一条边加上画一个权值,指向左子节点的边我们统统标记为 0,指向右子节点的边,统统标记为 1,那从根节点到叶节点的路径就是叶节点对应字符的霍夫曼编码。

数据结构与算法:37 | 贪心算法:贪心算法实现Huffman压缩编码_第8张图片

内容小结

实际上,贪心算法适用的场景比较有限。这种算法思想更多的是指导设计基础算法。比如最小生成树算法、单源最短路径算法,这些算法都用到了贪心算法。从个人的学习经验来讲,不要刻意去记忆贪心算法的原理,多练习才是最有效的学习方法

课后思考

1、在一个非负整数 a 中,我们希望从中移除 k 个数字,让剩下的数字值最小,如何选择移除哪 k 个数字呢?

由最高位开始,比较低一位数字,如高位大,移除,若高位小,则向右移一位继续比较两个数字,直到高位大于低位则移除,循环k次,如:
4556847594546移除5位-> 455647594546-> 45547594546-> 4547594546-> 4447594546-> 444594546

但是处理的过程中要考虑的细节很多,很容易出错,可以看这里:
LeetCode第 402 题:移掉K个数字(C++)_qq_32523711的博客-CSDN博客

2、假设有 n 个人等待被服务,但是服务窗口只有一个,每个人需要被服务的时间长度是不同的,如何安排被服务的先后顺序,才能让这 n 个人总的等待时间最短?

由等待时间最短的开始服务

你可能感兴趣的:(数据结构与算法,数据结构,贪心算法)