python实战之深圳公租房户籍区排位

小编在深圳申请了公租房,虽然可以通过深圳市住房和建设局网站查询到排位信息,却无法直观看出同样资格人群里自己的排名。 于是决定用python爬取轮候库数据,解决这个问题。

爬取说明

爬取网址:http://www.szjs.gov.cn/bsfw/zdyw_1/zfbz/gxfgs/

python实战之深圳公租房户籍区排位_第1张图片
python实战之深圳公租房户籍区排位_第2张图片

2018年9月30日爬取结果data.txt

3955877,1,BHJ005840,1,南山区
3955878,2,BHJ005866,1,南山区
3955879,3,BHJ021327,2,南山区
3955880,4,BHJ005848,1,南山区
3955881,5,BHJ006961,4,南山区
3955882,6,BHJ016656,1,南山区
3955883,7,BHJ002199,1,南山区
3955884,8,BHJ029628,3,罗湖区
3955885,9,BHJ016179,3,盐田区
3955886,10,BHJ022242,1,罗湖区

数据分为5列,依次为:用户唯一标识(可以忽略)、排位、备案号、申请人数、户籍所在区。

此次先简单手工将数据文件导入mysql数据库,再用sql检索结果。

后续学习计划:
使用python将文本数据导入mysql;
使用ELK,将数据导入elasticsearch,通过kibana展示分析;
做成在线功能放在的公众号(id:jintianbufaban),让非IT人员使用;

scrapy爬取公租房数据

安装scrapy不再赘述,开始爬取功能开发。
第一步:创建爬虫项目,命名为sz_security_housing

scrapy startproject sz_security_housing

下面是运行后的scrapy工程结构:


python实战之深圳公租房户籍区排位_第3张图片

第二步:配置items文件items.py

# -*- coding: utf-8 -*-

import scrapy

class SzSecurityHousingItem(scrapy.Item):
    #用户唯一id
    userid = scrapy.Field()
    #轮候排位
    seqno = scrapy.Field()

    #备案回执好
    applyNo = scrapy.Field()

    #申请人数
    num = scrapy.Field()

    #户籍所在地
    place = scrapy.Field()

第三步:在spiders文件夹中新建sz_security_housing.py

# -*- coding: utf-8 -*-
import scrapy
from sz_security_housing.items import SzSecurityHousingItem
from scrapy.http import FormRequest
import json
import time

class SzSecurityHousingSpider(scrapy.Spider):
    #爬虫名,启动爬虫使用
    name = 'szsh'

     #爬虫域
    allowed_domains = ['szjs.gov.cn']

    def start_requests(self):
        url = 'http://bzflh.szjs.gov.cn/TylhW/lhmcAction.do?method=queryYgbLhmcList'

        headers = {
            'Accept': 'application/json, text/javascript, */*; q=0.01',
            'Accept-Encoding': 'gzip, deflate',
            'Accept-Language': 'zh-CN,zh;q=0.9',
            'Connection': 'keep-alive',
            'Content-Type': 'application/x-www-form-urlencoded',
            'Host': 'bzflh.szjs.gov.cn',
            'Origin': 'http://bzflh.szjs.gov.cn',
            'Referer': 'http://bzflh.szjs.gov.cn/TylhW/lhmcAction.do?method=queryYgbLhmcInfo&waittype=2',
            'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/69.0.3497.100 Safari/537.36'
        }

        yield scrapy.FormRequest(
            url = url,
            headers = headers,
            formdata = {"pageNumber" : "1", "pageSize" : "10","waittype":"2","num":"0","shoulbahzh":"","xingm":"","idcard":""},
            meta={'pageNum':1,'pageSize':10,"headers":headers},
            callback = self.parse
        )


    def parse(self,response):
        item=SzSecurityHousingItem()
        data  = json.loads(response.body_as_unicode())
        # print(data)
        total = data["total"]
        # print(total)
        list = data["rows"]
        for value in list:
            item['userid']=value['LHMC_ID']
            item['seqno']=value['PAIX']
            item['applyNo']=value['SHOULHZH']
            yield item

        url = 'http://bzflh.szjs.gov.cn/TylhW/lhmcAction.do?method=queryYgbLhmcList'
        meta=response.meta
        prepageNumber=meta["pageNum"]
        pageSize=meta["pageSize"]
        headers=meta["headers"]
        print('finsh scrapy pageNumber:%s'%prepageNumber)
        print(len(list))
        time.sleep( 2 )
        pageNumber=prepageNumber+1
        if len(list) == pageSize:
            requestdata={"pageNumber" : "1", "pageSize" : "1000","waittype":"2","num":"0","shoulbahzh":"","xingm":"","idcard":""}
            requestdata['pageNumber']=str(pageNumber)
            requestdata['pageSize']=str(pageSize)
            meta['pageNum']=pageNumber
            # print(requestdata)
            yield scrapy.FormRequest(
                url = url,
                headers = headers,
                formdata =requestdata,
                meta=meta,
                callback = self.parse
            )

第四步:配置管道文件pipelines.py

# -*- coding: utf-8 -*-

from urllib import request
from lxml import etree
import re

class SzSecurityHousingPipeline(object):
    def process_item(self, item, spider):
        print(item)
        url='http://bzflh.szjs.gov.cn/TylhW/lhmcAction.do?method=queryDetailLhc&lhmcId=%s&waittype=2'%(item['userid'])
        print(url)
        try:
            response = request.urlopen(url,timeout=5)
            page = response.read()
            page = page.decode('utf-8')
            selector = etree.HTML(page)
            content=selector.xpath('//div[@class="leader_intro1"]')[1].xpath('string(.)')
            place = re.search('户籍所在区.*区',content).group().replace('户籍所在区:','')
            item['place']=place
            num=len(selector.xpath('//div[@class="leader_intro1"]'))-1
            item['num']=num
        except Exception:
            print ("Error:%s"%(item['seqno']))
        else:   
            print ("Success:%s"%(item['seqno']))
        ret=str(item['userid'])+','+str(item['seqno'])+","+str(item['applyNo'])+","+str(item['num'])+","+str(item['place'])+"\n"
        saveFile = open('data.txt','a')  
        saveFile.write(ret)  
        saveFile.close()  
        # print(item)

第五步:配置settings.py

BOT_NAME = 'sz_security_housing'

SPIDER_MODULES = ['sz_security_housing.spiders']
NEWSPIDER_MODULE = 'sz_security_housing.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'sz_security_housing (+http://www.yourdomain.com)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = True

# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'sz_security_housing.pipelines.SzSecurityHousingPipeline': 300,
}

第六步:在项目根目录运行程序,运行结果保存在data.txt

scrapy crawl szsh

python实战之深圳公租房户籍区排位_第4张图片

爬取结果data.txt

3955877,1,BHJ005840,1,南山区
3955878,2,BHJ005866,1,南山区
3955879,3,BHJ021327,2,南山区
3955880,4,BHJ005848,1,南山区
3955881,5,BHJ006961,4,南山区
3955882,6,BHJ016656,1,南山区
3955883,7,BHJ002199,1,南山区
3955884,8,BHJ029628,3,罗湖区
3955885,9,BHJ016179,3,盐田区
3955886,10,BHJ022242,1,罗湖区

爬虫结果分析

第一步:数据导入mysql
在mysql中建表T_PRH_DATA

CREATE TABLE `T_PRH_DATA` (
  `USER_ID` int(20) unsigned NOT NULL COMMENT '用户ID',
  `SEQ_NO` int(20) NOT NULL COMMENT '轮候排位',
  `APPLY_NO` varchar(20) NOT NULL DEFAULT '' COMMENT '备案号',
  `NUM` tinyint(4) NOT NULL DEFAULT 0 COMMENT '申请人数',
  `PLACE` varchar(20) NOT NULL DEFAULT '' COMMENT '户籍所在区',
  PRIMARY KEY (`USER_ID`),
  KEY `INDEX_APPLY_NO` (`APPLY_NO`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COMMENT='轮候信息'

导入mysql,这里我以Navicat为例:


python实战之深圳公租房户籍区排位_第5张图片
python实战之深圳公租房户籍区排位_第6张图片
python实战之深圳公租房户籍区排位_第7张图片
python实战之深圳公租房户籍区排位_第8张图片
python实战之深圳公租房户籍区排位_第9张图片

剩余的直接下一步,至此数据导入到mysql。

第二步:查询户籍区排名

SELECT T.PLACE,T.NUM,COUNT(1) FROM T_PRH_DATA T 
WHERE T.SEQ_NO <=(SELECT D.SEQ_NO FROM  T_PRH_DATA D WHERE  D.APPLY_NO='备案号')
AND T.PLACE='户籍所在区' 
GROUP BY T.PLACE,T.NUM 

这里排序第10个为例,他(她)属于罗湖区、备案号:BHJ022242


python实战之深圳公租房户籍区排位_第10张图片

以上这是这次的所有内容,源码地址:https://github.com/tianduo4/sz_security_housing

这是学习python的第一个练手项目,做的不好的请多多包涵。 使用过程中遇到问题,或者有更好建议欢迎留言。

你可能感兴趣的:(python实战之深圳公租房户籍区排位)