hive入门一

1. 创建仓库

hive> create database shizhan03;
OK
Time taken: 0.379 seconds

相当于在hdfs里面创建了一个目录,路径如下:/user/hive/warehouse/shizhan03.db

2. 使用仓库

hive> use shizhan03;
OK
Time taken: 0.042 seconds

3. 建表

hive> create table t_sz01(id int,name string);
OK
Time taken: 0.232 seconds

相当于在数据库路径下面创建了一个目录,
路径如下:/user/hive/warehouse/shizhan03.db/t_sz01

4. 放入数据到路径里面

hadoop fs -put data.txt /user/hive/warehouse/shizhan03.db/t_sz01

内容如下:

1,zhangsan
2,lisi
3,wangwu
4,zhaoliu
5,zhouqi

5. 创建表

hive> create table t_sz01(id int,name string)
    > row format delimited 
    > fields terminated by ',';
OK
Time taken: 0.5 seconds

6. 查看数据

hive> select * from t_sz01;
OK
1   zhangsan
2   lisi
3   wangwu
4   zhaoliu
5   zhouqi
Time taken: 0.552 seconds, Fetched: 5 row(s)

7. 统计第一列有多少行

hive> select count(1) from t_sz01;
Query ID = hadoop_20180904102400_d78a0a22-a4a2-4a96-984e-d0fbcf452264
Total jobs = 1
Launching Job 1 out of 1
Number of reduce tasks determined at compile time: 1
In order to change the average load for a reducer (in bytes):
  set hive.exec.reducers.bytes.per.reducer=<number>
In order to limit the maximum number of reducers:
  set hive.exec.reducers.max=<number>
In order to set a constant number of reducers:
  set mapreduce.job.reduces=<number>
Job running in-process (local Hadoop)
2018-09-04 10:24:03,695 Stage-1 map = 100%,  reduce = 100%
Ended Job = job_local396966903_0001
MapReduce Jobs Launched: 
Stage-Stage-1:  HDFS Read: 184 HDFS Write: 0 SUCCESS
Total MapReduce CPU Time Spent: 0 msec
OK
5
Time taken: 2.98 seconds, Fetched: 1 row(s)

注意:这里执行了mapreduce程序

8. 其他查询

select id,name from t_sz01 order by name;

你可能感兴趣的:(hadoop)