自然语言处理系列一》TF-IDF算法原理

注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】

文章目录

  • 自然语言处理系列一
    • 词频-逆文档频率(TF-IDF)
      • TFIDF算法原理
  • 总结

自然语言处理系列一

词频-逆文档频率(TF-IDF)

TF-IDF是Term Frequency - Inverse Document Frequency的缩写,即“词频-逆文本频率”。它由两部分组成,TF和IDF。前面的TF也就是我们前面说到的词频,我们之前做的向量化也就是做了文本中各个词的出现频率统计,并作为文本特征,这个很好理解。关键是后面的这个IDF,即“逆文本频率”如何理解。在上一节中,我们讲到几乎所有文本都会出现的"to"其词频虽然高,但是重要性却应该比词频低的"China"和“Travel”要低。我们的IDF就是来帮助我们来反应这个词的重要性的,进而修正仅仅用词频表示的词特征值。概括来讲, IDF反应了一个词在所有文本中出现的频率,如果一个词在很多的文本中出现,那么它的IDF值应该低,比如上文中的“to”。而反过来如果一个词在比较少的文本中出现,那么它的IDF值应该高。比如一些专业的名词如“Machine Learning”。这样的词IDF值应该高。一个极端的情况,如果一个词在所有的文本中都出现,那么它的IDF值应该为0。下面从Java和Python两种代码分别进行讲解。

TFIDF算法原理

TF-IDF(Term Frequency - Inverse Document Frequency)是一种用于资讯检索与文本挖掘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,互联网上的搜寻引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。
原理
在一份给定的文件里,词频(term frequency,TF)指的是某一个给定的词语在该文件中出现的次数。这个数字通常会被正规化,以防止它偏向长的文件。同一个词语在长文件里可能会比短文件有更高的词频,而不管该词语重要与否。
逆向文件频率(inverse document frequency,IDF)是一个词语普遍重要性的度量。某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到。
某一特定文件内的高词语频率,以及该词语在整个文件集合中的低文件频率,可以产生出高权重的TF-IDF。因此,TF-IDF倾向于过滤掉常见的词语,保留重要的词语。
TF-IDF本身是一种思想,除了用在文本数据外,也可以用在用户行为数据的算法上,比如电商网站里的协同过滤算法,不知道协同过滤算法的读者,本书最后一章的推荐算法系统实战会为大家详细讲解协同过滤算法,在协同过滤相似度计算中,TF就是原始相似度的值及购买某个商品的占比, docFreq文档频率就是每个商品的支持度, numDocs总的文档数就是总的用户数,代码如下所示。

public static double calculate(float tf, int df, int numDocs) {
     
return tf(tf) * idf(df, numDocs);
}
public static float idf(int docFreq, int numDocs) {
     
return (float) (Math.log(numDocs / (double) (docFreq + 1)) + 1.0);
}

public static float tf(float freq) {
     
return (float) Math.sqrt(freq);

总结

此文章有对应的配套视频,其它更多精彩文章请大家下载充电了么app,可获取千万免费好课和文章,配套新书教材请看陈敬雷新书:《分布式机器学习实战》(人工智能科学与技术丛书)

【新书介绍】
《分布式机器学习实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】
新书特色:深入浅出,逐步讲解分布式机器学习的框架及应用配套个性化推荐算法系统、人脸识别、对话机器人等实战项目

【新书介绍视频】
分布式机器学习实战(人工智能科学与技术丛书)新书【陈敬雷】
视频特色:重点对新书进行介绍,最新前沿技术热点剖析,技术职业规划建议!听完此课你对人工智能领域将有一个崭新的技术视野!职业发展也将有更加清晰的认识!

【精品课程】
《分布式机器学习实战》大数据人工智能AI专家级精品课程

【免费体验视频】:
人工智能百万年薪成长路线/从Python到最新热点技术

从Python编程零基础小白入门到人工智能高级实战系列课

视频特色: 本系列专家级精品课有对应的配套书籍《分布式机器学习实战》,精品课和书籍可以互补式学习,彼此相互补充,大大提高了学习效率。本系列课和书籍是以分布式机器学习为主线,并对其依赖的大数据技术做了详细介绍,之后对目前主流的分布式机器学习框架和算法进行重点讲解,本系列课和书籍侧重实战,最后讲几个工业级的系统实战项目给大家。 课程核心内容有互联网公司大数据和人工智能那些事、大数据算法系统架构、大数据基础、Python编程、Java编程、Scala编程、Docker容器、Mahout分布式机器学习平台、Spark分布式机器学习平台、分布式深度学习框架和神经网络算法、自然语言处理算法、工业级完整系统实战(推荐算法系统实战、人脸识别实战、对话机器人实战)、就业/面试技巧/职业生涯规划/职业晋升指导等内容。

【充电了么公司介绍】

充电了么App是专注上班族职业培训充电学习的在线教育平台。

专注工作职业技能提升和学习,提高工作效率,带来经济效益!今天你充电了么?

充电了么官网
http://www.chongdianleme.com/

充电了么App官网下载地址
https://a.app.qq.com/o/simple.jsp?pkgname=com.charged.app

功能特色如下:

【全行业职位】 - 专注职场上班族职业技能提升

覆盖所有行业和职位,不管你是上班族,高管,还是创业都有你要学习的视频和文章。其中大数据智能AI、区块链、深度学习是互联网一线工业级的实战经验。

除了专业技能学习,还有通用职场技能,比如企业管理、股权激励和设计、职业生涯规划、社交礼仪、沟通技巧、演讲技巧、开会技巧、发邮件技巧、工作压力如何放松、人脉关系等等,全方位提高你的专业水平和整体素质。

【牛人课堂】 - 学习牛人的工作经验

1.智能个性化引擎:

海量视频课程,覆盖所有行业、所有职位,通过不同行业职位的技能词偏好挖掘分析,智能匹配你目前职位最感兴趣的技能学习课程。

2.听课全网搜索

输入关键词搜索海量视频课程,应有尽有,总有适合你的课程。

3.听课播放详情

视频播放详情,除了播放当前视频,更有相关视频课程和文章阅读,对某个技能知识点强化,让你轻松成为某个领域的资深专家。

【精品阅读】 - 技能文章兴趣阅读

1.个性化阅读引擎:

千万级文章阅读,覆盖所有行业、所有职位,通过不同行业职位的技能词偏好挖掘分析,智能匹配你目前职位最感兴趣的技能学习文章。

2.阅读全网搜索

输入关键词搜索海量文章阅读,应有尽有,总有你感兴趣的技能学习文章。

【机器人老师】 - 个人提升趣味学习

基于搜索引擎和智能深度学习训练,为您打造更懂你的机器人老师,用自然语言和机器人老师聊天学习,寓教于乐,高效学习,快乐人生。

【精短课程】 - 高效学习知识

海量精短牛人课程,满足你的时间碎片化学习,快速提高某个技能知识点。

下一篇:自然语言处理系列二》Java代码实现TF-IDF

你可能感兴趣的:(人工智能,大数据,TF-IDF,数据库,大数据,自然语言处理,机器学习,tf-idf)