Flink-Source,Transfrom,Sink链路挂载流程

Flink源码阅读

    • 无知不可怕,骄傲才可怕
  • 1 WordCount代码
  • 2,Source
  • 3,TransFormation
  • 4,Sink
  • 总结

无知不可怕,骄傲才可怕

1 WordCount代码

package org.apache.flink.streaming.examples.wordcount;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.MultipleParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.examples.wordcount.util.WordCountData;
import org.apache.flink.util.Collector;
import org.apache.flink.util.Preconditions;
public class WordCount {
     
    // *************************************************************************
    // 先大致讲述一下代码,必须要有一个思路的转换,Flink与Spark一致,在没有执行executor之前,是不会执行的
    // 相当于是一个配置文件,最后执行了一下Start;
    // *************************************************************************
    public static void main(String[] args) throws Exception {
     
        // Checking input parameters 这个工具类是Flink独有的,不过多讲解,非常好用简单
        final MultipleParameterTool params = MultipleParameterTool.fromArgs(args);
        // set up the execution environment 创建全局应用环境上下文,类似于SparkContext和SpringBoot的Context
        final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        // 将解析的参数加入conf
        env.getConfig().setGlobalJobParameters(params);
        // 添加一个Source,Flink总共有三大件Source,Transform,Sink
        DataStream<String> text = null;
        if (params.has("input")) {
     
            // union all the inputs from text files
            for (String input : params.getMultiParameterRequired("input")) {
     
                if (text == null) {
     
                    text = env.readTextFile(input);
                } else {
     
                    text = text.union(env.readTextFile(input));
                }
            }
            Preconditions.checkNotNull(text, "Input DataStream should not be null.");
        } else {
     
            System.out.println("Executing WordCount example with default input data set.");
            System.out.println("Use --input to specify file input.");
            // get default test text data
            text = env.fromElements(WordCountData.WORDS);
        }
        // 添加一个Transform,很简单,类似于Spark
        DataStream<Tuple2<String, Integer>> counts =
                // split up the lines in pairs (2-tuples) containing: (word,1)
                text.flatMap(new Tokenizer())
                        // group by the tuple field "0" and sum up tuple field "1"
                        .keyBy(value -> value.f0)
                        .sum(1);
        // 添加一个Sink
        if (params.has("output")) {
     
            counts.writeAsText(params.get("output"));
        } else {
     
            System.out.println("Printing result to stdout. Use --output to specify output path.");
            counts.print();
        }
        // execute program
        env.execute("Streaming WordCount"); //这里这个参数指的是Flink的JOBName,展示在Web页面的
        System.out.println(env.getExecutionPlan()); 打印执行计划
    }
    // *************************************************************************
    // USER FUNCTIONS Flink支持用户创建类实现的方式来完成函数定义
    // *************************************************************************
    public static final class Tokenizer implements FlatMapFunction<String, Tuple2<String, Integer>> {
     
        @Override
        public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
     
            // normalize and split the line
            String[] tokens = value.toLowerCase().split("\\W+");
            // emit the pairs
            for (String token : tokens) {
     
                if (token.length() > 0) {
     
                    out.collect(new Tuple2<>(token, 1));
                }
            }
        }
    }
}

2,Source

以text = env.fromElements(WordCountData.WORDS)为例;

源码里是这样说的,创建一个有限的数据流,数据必须是同一类型,例如全部是Integer或者String类型,Flink将尝试从Data中获取类型
@SafeVarargs
public final <OUT> DataStreamSource<OUT> fromElements(OUT... data) {
     
    //判断数据是否为空,这个简单不需要说那么多
    if (data.length == 0) {
     
        throw new IllegalArgumentException(
                "fromElements needs at least one element as argument");
    }
    //创建一个TypeInfo
    TypeInformation<OUT> typeInfo;
    try {
     
        //根据第一条数据获取其数据类型,这里我的数据第一条是String,我们可以自己指定类型
        typeInfo = TypeExtractor.getForObject(data[0]);
    } catch (Exception e) {
     
        throw new RuntimeException(
                "Could not create TypeInformation for type "
                        + data[0].getClass().getName()
                        + "; please specify the TypeInformation manually via "
                        + "StreamExecutionEnvironment#fromElements(Collection, TypeInformation)",
                e);
    }
    //这里我们看到调用了fromCollection,传入了数据和数据类型
    return fromCollection(Arrays.asList(data), typeInfo);
} 
该方法意思是从给定的非空集合创建数据流
public <OUT> DataStreamSource<OUT> fromCollection(Collection<OUT> data, TypeInformation<OUT> typeInfo) {
     
   Preconditions.checkNotNull(data, "Collection must not be null"); //判断数据是否为空,如果为空抛出异常

   // must not have null elements and mixed elements 必须是非空的和相同类型的元素
   FromElementsFunction.checkCollection(data, typeInfo.getTypeClass());
   // 创建一个SourceFunction,这里很简单了,Flink三大件第一步,没这步后面都是扯淡
   SourceFunction<OUT> function;
   try {
     
   	   //new Function,函数里面就不说了,有兴趣的可以去看一下
       function = new FromElementsFunction<>(typeInfo.createSerializer(getConfig()), data);
   } catch (IOException e) {
     
       throw new RuntimeException(e.getMessage(), e);
   }
   //该Function为SourceFunction,我们将它注册到Source中去,这里我们注意一下
   //如果我们之后调用该方法,该方法的并行度将永远是1
   return addSource(function, "添加了一个source", typeInfo, Boundedness.BOUNDED)
           .setParallelism(1);
}
private <OUT> DataStreamSource<OUT> addSource(
        final SourceFunction<OUT> function,
        final String sourceName,
        @Nullable final TypeInformation<OUT> typeInfo,
        final Boundedness boundedness) {
     
    checkNotNull(function);
    checkNotNull(sourceName);
    checkNotNull(boundedness);
    //获取数据类型
    TypeInformation<OUT> resolvedTypeInfo =
            getTypeInfo(function, sourceName, SourceFunction.class, typeInfo);
    //判断该数据流是否并行
    boolean isParallel = function instanceof ParallelSourceFunction;
    //清除一些不必要的闭包,Spark也有该操作
    clean(function);
    //创建一个StreamSource流
    final StreamSource<OUT, ?> sourceOperator = new StreamSource<>(function);
    //创建一个DataStreamSource对象,继续往下走
    return new DataStreamSource<>(
            this, resolvedTypeInfo, sourceOperator, isParallel, sourceName, boundedness);
}
public DataStreamSource(
            StreamExecutionEnvironment environment,
            TypeInformation<T> outTypeInfo,
            StreamSource<T, ?> operator,
            boolean isParallel,
            String sourceName,
            Boundedness boundedness) {
     
        super(   //直接调用父类的构造方法,创一个对象,将env和LegacySourceTransformation对象传入
                 //至此我们的DataStreamSource创建完毕,Souce篇到此结束
                 //这里注意一下transformation对象,后面有用
                environment,
                new LegacySourceTransformation<>(
                        sourceName,
                        operator,
                        outTypeInfo,
                        environment.getParallelism(),
                        boundedness));
        this.isParallel = isParallel;
        if (!isParallel) {
     
            setParallelism(1);
        }
    }

3,TransFormation

public <R> SingleOutputStreamOperator<R> flatMap(FlatMapFunction<T, R> flatMapper) {
     
	//解析数据类型,同上;
  TypeInformation<R> outType = TypeExtractor.getFlatMapReturnTypes(clean(flatMapper), getType(), Utils.getCallLocationName(), true);
	//调用flatMap方法返回的对象,继续深入
  return flatMap(flatMapper, outType);
}
public <R> SingleOutputStreamOperator<R> flatMap(
            FlatMapFunction<T, R> flatMapper, TypeInformation<R> outputType) {
     
        //调用transform方法,完成对象返回
        return transform("Flat Map", outputType, new StreamFlatMap<>(clean(flatMapper)));
}
public <R> SingleOutputStreamOperator<R> flatMap(
            FlatMapFunction<T, R> flatMapper, TypeInformation<R> outputType) {
     
        //调用transform方法,完成对象返回
        return transform("Flat Map", outputType, new StreamFlatMap<>(clean(flatMapper)));
}
protected <R> SingleOutputStreamOperator<R> doTransform(
            String operatorName,
            TypeInformation<R> outTypeInfo,
            StreamOperatorFactory<R> operatorFactory) {
     
        //中间略过一个方法,太简单了,所以直接过
        // read the output type of the input Transform to coax out errors about MissingTypeInfo
        transformation.getOutputType();//这里就是看一下有没有source
        //创建一个transformation对象,标识为一个transformation
        OneInputTransformation<T, R> resultTransform =
                new OneInputTransformation<>(
                        this.transformation,
                        operatorName,
                        operatorFactory,
                        outTypeInfo,
                        environment.getParallelism());
        //创建结果流
        @SuppressWarnings({
     "unchecked", "rawtypes"})
        SingleOutputStreamOperator<R> returnStream =
                new SingleOutputStreamOperator(environment, resultTransform);
        //添加转换链条
        getExecutionEnvironment().addOperator(resultTransform);
        //返回流
        return returnStream;
    }

这里有一个点注意一下,不是所有的transformation都会被加入,比如默认的keyby算子,也就是分组算子,我们看下效果;

KeyedStream(
           DataStream<T> stream,
           PartitionTransformation<T> partitionTransformation,
           KeySelector<T, KEY> keySelector,
           TypeInformation<KEY> keyType) {
     
       //可以看出keyby并没有被加入transform中,那究竟是为什么呢
       super(stream.getExecutionEnvironment(), partitionTransformation);
       this.keySelector = clean(keySelector);
       this.keyType = validateKeyType(keyType);
}
public SingleOutputStreamOperator<T> reduce(ReduceFunction<T> reducer) {
     
       //其实是因为将keyby组合成了reduceTransfrom,也就是常说的flink简单优化了流程链路,这里真是一个小tips
       //不过也可以通过设置并行度强行将锁链打开,不过作用不大,Transfrom到此结束
       ReduceTransformation<T, KEY> reduce =
               new ReduceTransformation<>(
                       "Keyed Reduce",
                       environment.getParallelism(),
                       transformation,
                       clean(reducer),
                       keySelector,
                       getKeyType());
       getExecutionEnvironment().addOperator(reduce);
       return new SingleOutputStreamOperator<>(getExecutionEnvironment(), reduce);
}

4,Sink

@PublicEvolving
public DataStreamSink<T> print() {
     
    //可以看到和Source区别不大有木有;
    //往里深入一下
    PrintSinkFunction<T> printFunction = new PrintSinkFunction<>();
    return addSink(printFunction).name("Print to Std. Out");
}
public DataStreamSink<T> addSink(SinkFunction<T> sinkFunction) {
     
    
    // read the output type of the input Transform to coax out errors about MissingTypeInfo
    transformation.getOutputType();
    // configure the type if needed 略过该方法讲解,作用不大
    if (sinkFunction instanceof InputTypeConfigurable) {
     
        ((InputTypeConfigurable) sinkFunction).setInputType(getType(), getExecutionConfig());
    }
    //创建Sink
    StreamSink<T> sinkOperator = new StreamSink<>(clean(sinkFunction));
    //通过StreamSink得到数据流输出
    DataStreamSink<T> sink = new DataStreamSink<>(this, sinkOperator);
    //插入链路,这个也是有原因的,具体原因我想懂flink的人都懂
    getExecutionEnvironment().addOperator(sink.getTransformation());
    return sink;
}

总结

说实话,前段时间过的特别黑暗,浑浑噩噩,最近终于能静下心来好好阅读源码,好好学习,以上流程就是Flink的
Source
Transformation
Sink
链路生成流程,可以看到,并没有执行,数据根本不流动,所以可以把它们看做是一个插件,Spark也是如此,相当于是配置文件,Flink学会之后一定要静下心来总结,开始探索底层,说实话Spark其实探索了百分之十左右到现在的放弃以及彻底忘了scala咋写告诫了我一定要每日要学习,复习,技术犹如逆水行舟,不进则退,所以一定要努力学习

你可能感兴趣的:(Flink,java,flink)