python爬虫小试

问题来源:最近想在一品威客上寻找兼职,但是发现一品威客的兼职信息不支持按任务或者投标人数进行排序,因而想通过爬虫将兼职信息爬取下来,然后在本地进行排序查找。


一.搭建scrapy环境

1.安装python3.6
ps:这个网上教程很多

2.安装pywin32
ps:利用pip进行安装,在cmd命令窗口下输入命令:python -m pip install pywin32

3安装Twisted
ps:这个安装可以参https://blog.csdn.net/sinat_35637319/article/details/78940415

4.安装scrapy
利用命令pip install Scrapy 就OK了

二.scrapy的基本命令

1.建立工程命令:scrapy startproject xxx

2.运行工程命令:scrapy crawl xxx

三.在Pycharm进行爬虫开发

scrapy 需要通过命令窗口执行命令scrapy startproject xxx 生成工程(不支持在pycharm上进行工程建立),然后可以利用pycharm进行代码编辑(直接在pycharm上打开这个工程)
若想在pycharm上进行调试,需要如图所示的配置。

python爬虫小试_第1张图片
pycharm上的环境配置

到此为止,就可以在pycharm上进行开发了。

三.如何爬数据

1.scrapy运行原理

python爬虫小试_第2张图片
scrapy框架原理图
python爬虫小试_第3张图片
pycharm工程架构图

scrapy框架数据流与代码执行过程
a. spider->scrapy->Internet
在工程中只需要关心spiders的weike.py的实现

b.Internet->scrapy->spider->pipeline
spiders的weike.py -----(items.py)----->pipelines.py

weike.py :负责提供页面请求的uri以及网页响应得到的数据解析
pipelines.py:负责保存网页响应的数据
items.py:负责保存的载体,是一个字典对象,类似于数据model,
setting.py:负责配置工程的重要参数

2.weike.py的编写

   # -*- coding: utf-8 -*-
import re
import scrapy
from weike.items import WeikeItem

class weike(scrapy.Spider):

    # 爬虫名
    name = "weike"
    
    # 爬虫作用范围
    allowed_domains = ["epwk.com"]

    url = "http://www.epwk.com/soft/task/"
    offset = 1
    string="page%d.html" % offset
    # 起始url
    start_urls = [url + string]

    def parse(self, response):
        cotain=response.xpath("//div[@class='task_class_list_li'] ")
        for each in cotain.xpath("//div[@class='task_class_list_li_box'] "):
                # 初始化模型对象
                    item = WeikeItem()
                    price = each.xpath("./div[1]/h3/b/text()").extract()[0]
                    item['projectPrice']=re.split(u'\xa0',price)[1]
                    projectName= each.xpath("./div[1]/h3/a/text()").extract()[0]
                    item['projectName']=str(projectName).strip()
                    canjiaCount = each.xpath("./div[1]/samp/text()").extract()[0]
                    item['canjiaCount']=re.sub("\D", "", canjiaCount)
                    item['viewCount'] = each.xpath("./div[1]/samp/font/text()").extract()[0]
                    try:
                        item['time1'] = each.xpath("./div[2]/span/span[1]/text() ").extract()[0]
                        item['time2'] = each.xpath("./div[2]/span/span[2]/text() ").extract()[0]
                    except:
                        pass
                    finally:
                        pass
                    yield item

        if self.offset < 10:
            self.offset += 1

        string = "page%d.html" % self.offset
        # 每次处理完一页的数据之后,重新发送下一页页面请求
        # self.offset自增1,同时拼接为新的url,并调用回调函数self.parse处理Response
        yield scrapy.Request(self.url + str(string), callback = self.parse)

3.pipelines.py的编写

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html
import json


class WeikePipeline(object):
    """
       功能:保存item数据
   """

    def __init__(self):
        self.filename = open("weike.json", "w",encoding='utf-8')

    def process_item(self, item, spider):
        text= json.dumps(dict(item), ensure_ascii=False) + ",\n"
        text.replace(u'\xa0', u' ')
        self.filename.write(bytes.decode(text.encode("utf-8")))
        return item

    def close_spider(self, spider):
        self.filename.close()

4.items.py的编写

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class WeikeItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()

    # 金额
    projectPrice = scrapy.Field()
    # 名称
    projectName = scrapy.Field()
    # 投标人数
    canjiaCount = scrapy.Field()
    # 浏览人数
    viewCount = scrapy.Field()
    # 截止日期
    time1 = scrapy.Field()
    time2 = scrapy.Field()

5.setting.py的编写

# -*- coding: utf-8 -*-


BOT_NAME = 'weike'

SPIDER_MODULES = ['weike.spiders']
NEWSPIDER_MODULE = 'weike.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'Tencent (+http://www.yourdomain.com)'

# Obey robots.txt rules
ROBOTSTXT_OBEY = True

# 设置请求头部,添加url
DEFAULT_REQUEST_HEADERS = {
    "User-Agent" : "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0;",
    'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8'
}

# 设置item——pipelines
ITEM_PIPELINES = {
    'weike.pipelines.WeikePipeline': 300,
}

6.运行结果
点击pycharm中的运行可以得到如下结果weike.json,数据截图如下:


python爬虫小试_第4张图片
输出结果截图

现在得到的json结果,也可以保存成excel进行分析

总结

参考链接:https://www.cnblogs.com/xinyangsdut/p/7628770.html

你可能感兴趣的:(python爬虫小试)