Tensorflow学习: AlexNet完整训练与测试代码

alexnet.py

"""This is an TensorFLow implementation of AlexNet by Alex Krizhevsky at all.

Paper:
(http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)

Explanation can be found in my blog post:
https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html

This script enables finetuning AlexNet on any given Dataset with any number of
classes. The structure of this script is strongly inspired by the fast.ai
Deep Learning class by Jeremy Howard and Rachel Thomas, especially their vgg16
finetuning script:
Link:
- https://github.com/fastai/courses/blob/master/deeplearning1/nbs/vgg16.py


The pretrained weights can be downloaded here and should be placed in the same
folder as this file:
- http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/

@author: Frederik Kratzert (contact: f.kratzert(at)gmail.com)
"""

import tensorflow as tf
import numpy as np


class AlexNet(object):
    """Implementation of the AlexNet."""

    def __init__(self, x, keep_prob, num_classes, skip_layer,
                 weights_path='DEFAULT'):
        """Create the graph of the AlexNet model.

        Args:
            x: Placeholder for the input tensor.
            keep_prob: Dropout probability.
            num_classes: Number of classes in the dataset.
            skip_layer: List of names of the layer, that get trained from
                scratch
            weights_path: Complete path to the pretrained weight file, if it
                isn't in the same folder as this code
        """
        # Parse input arguments into class variables
        self.X = x
        self.NUM_CLASSES = num_classes
        self.KEEP_PROB = keep_prob
        self.SKIP_LAYER = skip_layer

        if weights_path == 'DEFAULT':
            self.WEIGHTS_PATH = 'bvlc_alexnet.npy'
        else:
            self.WEIGHTS_PATH = weights_path

        # Call the create function to build the computational graph of AlexNet
        self.create()

    def create(self):
        """Create the network graph."""
        # 1st Layer: Conv (w ReLu) -> Lrn -> Pool
        conv1 = conv(self.X, 11, 11, 96, 4, 4, padding='VALID', name='conv1')
        norm1 = lrn(conv1, 2, 1e-04, 0.75, name='norm1')
        pool1 = max_pool(norm1, 3, 3, 2, 2, padding='VALID', name='pool1')
        
        # 2nd Layer: Conv (w ReLu)  -> Lrn -> Pool with 2 groups
        conv2 = conv(pool1, 5, 5, 256, 1, 1, groups=2, name='conv2')
        norm2 = lrn(conv2, 2, 1e-04, 0.75, name='norm2')
        pool2 = max_pool(norm2, 3, 3, 2, 2, padding='VALID', name='pool2')
        
        # 3rd Layer: Conv (w ReLu)
        conv3 = conv(pool2, 3, 3, 384, 1, 1, name='conv3')

        # 4th Layer: Conv (w ReLu) splitted into two groups
        conv4 = conv(conv3, 3, 3, 384, 1, 1, groups=2, name='conv4')

        # 5th Layer: Conv (w ReLu) -> Pool splitted into two groups
        conv5 = conv(conv4, 3, 3, 256, 1, 1, groups=2, name='conv5')
        pool5 = max_pool(conv5, 3, 3, 2, 2, padding='VALID', name='pool5')

        # 6th Layer: Flatten -> FC (w ReLu) -> Dropout
        flattened = tf.reshape(pool5, [-1, 6*6*256])
        fc6 = fc(flattened, 6*6*256, 4096, name='fc6')
        dropout6 = dropout(fc6, self.KEEP_PROB)

        # 7th Layer: FC (w ReLu) -> Dropout
        fc7 = fc(dropout6, 4096, 4096, name='fc7')
        dropout7 = dropout(fc7, self.KEEP_PROB)

        # 8th Layer: FC and return unscaled activations
        self.fc8 = fc(dropout7, 4096, self.NUM_CLASSES, relu=False, name='fc8')

    def load_initial_weights(self, session):
        """Load weights from file into network.

        As the weights from http://www.cs.toronto.edu/~guerzhoy/tf_alexnet/
        come as a dict of lists (e.g. weights['conv1'] is a list) and not as
        dict of dicts (e.g. weights['conv1'] is a dict with keys 'weights' &
        'biases') we need a special load function
        """
        # Load the weights into memory
        weights_dict = np.load(self.WEIGHTS_PATH, encoding='bytes').item()

        # Loop over all layer names stored in the weights dict
        for op_name in weights_dict:

            # Check if layer should be trained from scratch
            if op_name not in self.SKIP_LAYER:

                with tf.variable_scope(op_name, reuse=True):

                    # Assign weights/biases to their corresponding tf variable
                    for data in weights_dict[op_name]:

                        # Biases
                        if len(data.shape) == 1:
                            var = tf.get_variable('biases', trainable=False)
                            session.run(var.assign(data))

                        # Weights
                        else:
                            var = tf.get_variable('weights', trainable=False)
                            session.run(var.assign(data))


def conv(x, filter_height, filter_width, num_filters, stride_y, stride_x, name,
         padding='SAME', groups=1):
    """Create a convolution layer.

    Adapted from: https://github.com/ethereon/caffe-tensorflow
    """
    # Get number of input channels
    input_channels = int(x.get_shape()[-1])

    # Create lambda function for the convolution
    convolve = lambda i, k: tf.nn.conv2d(i, k,
                                         strides=[1, stride_y, stride_x, 1],
                                         padding=padding)

    with tf.variable_scope(name) as scope:
        # Create tf variables for the weights and biases of the conv layer
        weights = tf.get_variable('weights', shape=[filter_height,
                                                    filter_width,
                                                    input_channels/groups,
                                                    num_filters])
        biases = tf.get_variable('biases', shape=[num_filters])

    if groups == 1:
        conv = convolve(x, weights)

    # In the cases of multiple groups, split inputs & weights and
    else:
        # Split input and weights and convolve them separately
        input_groups = tf.split(axis=3, num_or_size_splits=groups, value=x)
        weight_groups = tf.split(axis=3, num_or_size_splits=groups,
                                 value=weights)
        output_groups = [convolve(i, k) for i, k in zip(input_groups, weight_groups)]

        # Concat the convolved output together again
        conv = tf.concat(axis=3, values=output_groups)

    # Add biases
    bias = tf.reshape(tf.nn.bias_add(conv, biases), tf.shape(conv))

    # Apply relu function
    relu = tf.nn.relu(bias, name=scope.name)

    return relu


def fc(x, num_in, num_out, name, relu=True):
    """Create a fully connected layer."""
    with tf.variable_scope(name) as scope:

        # Create tf variables for the weights and biases
        weights = tf.get_variable('weights', shape=[num_in, num_out],
                                  trainable=True)
        biases = tf.get_variable('biases', [num_out], trainable=True)

        # Matrix multiply weights and inputs and add bias
        act = tf.nn.xw_plus_b(x, weights, biases, name=scope.name)

    if relu:
        # Apply ReLu non linearity
        relu = tf.nn.relu(act)
        return relu
    else:
        return act


def max_pool(x, filter_height, filter_width, stride_y, stride_x, name,
             padding='SAME'):
    """Create a max pooling layer."""
    return tf.nn.max_pool(x, ksize=[1, filter_height, filter_width, 1],
                          strides=[1, stride_y, stride_x, 1],
                          padding=padding, name=name)


def lrn(x, radius, alpha, beta, name, bias=1.0):
    """Create a local response normalization layer."""
    return tf.nn.local_response_normalization(x, depth_radius=radius,
                                              alpha=alpha, beta=beta,
                                              bias=bias, name=name)


def dropout(x, keep_prob):
    """Create a dropout layer."""
    return tf.nn.dropout(x, keep_prob)
datagenerator.py

# Created on Wed May 31 14:48:46 2017
#
# @author: Frederik Kratzert

"""Containes a helper class for image input pipelines in tensorflow."""

import tensorflow as tf
import numpy as np

from tensorflow.contrib.data import Dataset
from tensorflow.python.framework import dtypes
from tensorflow.python.framework.ops import convert_to_tensor

IMAGENET_MEAN = tf.constant([123.68, 116.779, 103.939], dtype=tf.float32)


class ImageDataGenerator(object):
    """Wrapper class around the new Tensorflows dataset pipeline.

    Requires Tensorflow >= version 1.12rc0
    """

    def __init__(self, filed, txt_file, mode, batch_size, num_classes, shuffle=True,
                 buffer_size=1000):
        """Create a new ImageDataGenerator.

        Recieves a path string to a text file, which consists of many lines,
        where each line has first a path string to an image and seperated by
        a space an integer, referring to the class number. Using this data,
        this class will create TensrFlow datasets, that can be used to train
        e.g. a convolutional neural network.

        Args:
            txt_file: Path to the text file.
            mode: Either 'training' or 'validation'. Depending on this value,
                different parsing functions will be used.
            batch_size: Number of images per batch.
            num_classes: Number of classes in the dataset.
            shuffle: Wether or not to shuffle the data in the dataset and the
                initial file list.
            buffer_size: Number of images used as buffer for TensorFlows
                shuffling of the dataset.

        Raises:
            ValueError: If an invalid mode is passed.

        """
        self.filed = filed
        self.txt_file = txt_file
        self.num_classes = num_classes

        # retrieve the data from the text file
        self._read_txt_file()

        # number of samples in the dataset
        self.data_size = len(self.labels)

        # initial shuffling of the file and label lists (together!)
        if shuffle:
            self._shuffle_lists()
        else:
            self._Noshuffle_lists()

        # convert lists to TF tensor
        self.img_paths = convert_to_tensor(self.img_paths, dtype=dtypes.string)
        self.labels = convert_to_tensor(self.labels, dtype=dtypes.int32)

        # create dataset
        data = Dataset.from_tensor_slices((self.img_paths, self.labels))

        # distinguish between train/infer. when calling the parsing functions
        if mode == 'training':
            data = data.map(self._parse_function_train, num_threads=8,
                      output_buffer_size=100*batch_size)

        elif mode == 'inference':
            data = data.map(self._parse_function_inference, num_threads=8,
                      output_buffer_size=100*batch_size)

        else:
            raise ValueError("Invalid mode '%s'." % (mode))

        # shuffle the first `buffer_size` elements of the dataset
        if shuffle:
            data = data.shuffle(buffer_size=buffer_size)

        # create a new dataset with batches of images
        data = data.batch(batch_size)

        self.data = data

    def _read_txt_file(self):
        """Read the content of the text file and store it into lists."""
        self.img_paths = []
        self.labels = []
        with open(self.txt_file, 'r') as f:
            lines = f.readlines()
            for line in lines:
                items = line.split(' ')
                self.img_paths.append(items[0])
                self.labels.append(int(items[1]))

    def _shuffle_lists(self):
        """Conjoined shuffling of the list of paths and labels."""
        path = self.img_paths
        labels = self.labels
        permutation = np.random.permutation(self.data_size)
        self.img_paths = []
        self.labels = []
        for i in permutation:
            self.img_paths.append(self.filed+path[i])
            self.labels.append(labels[i])
            
    def _Noshuffle_lists(self):
        """Conjoined shuffling of the list of paths and labels."""
        path = self.img_paths
        labels = self.labels
        self.img_paths = []
        self.labels = []
        for i in self.data_size:
            self.img_paths.append(self.filed+path[i])
            self.labels.append(labels[i])
        

    def _parse_function_train(self, filename, label):
        """Input parser for samples of the training set."""
        # convert label number into one-hot-encoding
        one_hot = tf.one_hot(label, self.num_classes)

        # load and preprocess the image
        img_string = tf.read_file(filename)
        img_decoded = tf.image.decode_png(img_string, channels=3)
        img_resized = tf.image.resize_images(img_decoded, [227, 227])
        """
        Dataaugmentation comes here.
        """
        img_centered = tf.subtract(img_resized, IMAGENET_MEAN)

        # RGB -> BGR
        img_bgr = img_centered[:, :, ::-1]

        return img_bgr, one_hot

    def _parse_function_inference(self, filename, label):
        """Input parser for samples of the validation/test set."""
        # convert label number into one-hot-encoding
        one_hot = tf.one_hot(label, self.num_classes)

        # load and preprocess the image
        img_string = tf.read_file(filename)
        img_decoded = tf.image.decode_png(img_string, channels=3)
        img_resized = tf.image.resize_images(img_decoded, [227, 227])
        img_centered = tf.subtract(img_resized, IMAGENET_MEAN)

        # RGB -> BGR
        img_bgr = img_centered[:, :, ::-1]

        return img_bgr, one_hot
train.py

"""Script to finetune AlexNet using Tensorflow.

With this script you can finetune AlexNet as provided in the alexnet.py
class on any given dataset. Specify the configuration settings at the
beginning according to your problem.
This script was written for TensorFlow >= version 1.2rc0 and comes with a blog
post, which you can find here:

https://kratzert.github.io/2017/02/24/finetuning-alexnet-with-tensorflow.html

Author: Frederik Kratzert
contact: f.kratzert(at)gmail.com
"""

import os

import numpy as np
import tensorflow as tf

from alexnet import AlexNet
from datagenerator import ImageDataGenerator
from datetime import datetime
from tensorflow.contrib.data import Iterator

"""
Configuration Part.
"""
filed='D:/tensorflow/bvlc_alexnet/finetune_alexnet_with_tensorflow-master'
# Path to the textfiles for the trainings and validation set
train_file = 'D:/tensorflow/bvlc_alexnet/finetune_alexnet_with_tensorflow-master\train.txt'
val_file = 'D:/tensorflow\bvlc_alexnet/finetune_alexnet_with_tensorflow-master\val.txt'

# Learning params
learning_rate = 0.01
num_epochs = 10
batch_size = 20

# Network params
dropout_rate = 0.5
num_classes = 2
train_layers = ['fc8', 'fc7', 'fc6']

# How often we want to write the tf.summary data to disk
display_step = 20

# Path for tf.summary.FileWriter and to store model checkpoints
filewriter_path = 'D:/tensorflow/bvlc_alexnet/finetune_alexnet_with_tensorflow-master\tensorboard'
checkpoint_path = 'D:/tensorflow/bvlc_alexnet/finetune_alexnet_with_tensorflow-master\checkpoints'

"""
Main Part of the finetuning Script.
"""

# Create parent path if it doesn't exist
#if not os.path.isdir(checkpoint_path):
    #os.mkdir(checkpoint_path)


# Place data loading and preprocessing on the cpu
with tf.device('/cpu:0'):
    tr_data = ImageDataGenerator(filed,
                                 train_file,
                                 mode='training',
                                 batch_size=batch_size,
                                 num_classes=num_classes,
                                 shuffle=True)
    val_data = ImageDataGenerator(filed,
                                  val_file,
                                  mode='inference',
                                  batch_size=batch_size,
                                  num_classes=num_classes,
                                  shuffle=False)

    # create an reinitializable iterator given the dataset structure
    iterator = Iterator.from_structure(tr_data.data.output_types,
                                       tr_data.data.output_shapes)
    next_batch = iterator.get_next()

# Ops for initializing the two different iterators
training_init_op = iterator.make_initializer(tr_data.data)
validation_init_op = iterator.make_initializer(val_data.data)

# TF placeholder for graph input and output
x = tf.placeholder(tf.float32, [batch_size, 227, 227, 3])
y = tf.placeholder(tf.float32, [batch_size, num_classes])
keep_prob = tf.placeholder(tf.float32)

# Initialize model
model = AlexNet(x, keep_prob, num_classes, train_layers)

""" AlexNet

        Args:
            x: Placeholder for the input tensor.
            keep_prob: Dropout probability.
            num_classes: Number of classes in the dataset.
            skip_layer: List of names of the layer, that get trained from
                scratch
            weights_path: Complete path to the pretrained weight file, if it
            isn't in the same folder as this code
"""

# Link variable to model output
score = model.fc8

# List of trainable variables of the layers we want to train
var_list = [v for v in tf.trainable_variables() if v.name.split('/')[0] in train_layers]

# Op for calculating the loss
with tf.name_scope("cross_ent"):
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=score,
                                                                  labels=y))

# Train op
with tf.name_scope("train"):
    # Get gradients of all trainable variables
    gradients = tf.gradients(loss, var_list)
    gradients = list(zip(gradients, var_list))

    # Create optimizer and apply gradient descent to the trainable variables
    optimizer = tf.train.GradientDescentOptimizer(learning_rate)
    train_op = optimizer.apply_gradients(grads_and_vars=gradients)

# Add gradients to summary
for gradient, var in gradients:
    tf.summary.histogram(var.name + '/gradient', gradient)

# Add the variables we train to the summary
for var in var_list:
    tf.summary.histogram(var.name, var)

# Add the loss to summary
tf.summary.scalar('cross_entropy', loss)


# Evaluation op: Accuracy of the model
with tf.name_scope("accuracy"):
    correct_pred = tf.equal(tf.argmax(score, 1), tf.argmax(y, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))

# Add the accuracy to the summary
tf.summary.scalar('accuracy', accuracy)

# Merge all summaries together
merged_summary = tf.summary.merge_all()

# Initialize the FileWriter
writer = tf.summary.FileWriter(filewriter_path)

# Initialize an saver for store model checkpoints
saver = tf.train.Saver()

# Get the number of training/validation steps per epoch
train_batches_per_epoch = int(np.floor(tr_data.data_size/batch_size))
val_batches_per_epoch = int(np.floor(val_data.data_size / batch_size))

# Start Tensorflow session
with tf.Session() as sess:

    # Initialize all variables
    sess.run(tf.global_variables_initializer())

    # Add the model graph to TensorBoard
    writer.add_graph(sess.graph)

    # Load the pretrained weights into the non-trainable layer
    model.load_initial_weights(sess)

    print("{} Start training...".format(datetime.now()))
    print("{} Open Tensorboard at --logdir {}".format(datetime.now(),
                                                      filewriter_path))

    # Loop over number of epochs
    for epoch in range(num_epochs):

        print("{} Epoch number: {}".format(datetime.now(), epoch+1))

        # Initialize iterator with the training dataset
        sess.run(training_init_op)

        for step in range(train_batches_per_epoch):

            # get next batch of data
            img_batch, label_batch = sess.run(next_batch)

            # And run the training op
            sess.run(train_op, feed_dict={x: img_batch,
                                          y: label_batch,
                                          keep_prob: dropout_rate})

            # Generate summary with the current batch of data and write to file
            if step % display_step == 0:
                s = sess.run(merged_summary, feed_dict={x: img_batch,
                                                        y: label_batch,
                                                        keep_prob: 1.})

                writer.add_summary(s, epoch*train_batches_per_epoch + step)

        # Validate the model on the entire validation set
        print("{} Start validation".format(datetime.now()))
        sess.run(validation_init_op)
        test_acc = 0.
        test_count = 0
        for _ in range(val_batches_per_epoch):

            img_batch, label_batch = sess.run(next_batch)
            acc = sess.run(accuracy, feed_dict={x: img_batch,
                                                y: label_batch,
                                                keep_prob: 1.})
            test_acc += acc
            test_count += 1
        test_acc /= test_count
        print("{} Validation Accuracy = {:.4f}".format(datetime.now(),
                                                       test_acc))
        print("{} Saving checkpoint of model...".format(datetime.now()))

        # save checkpoint of the model
        checkpoint_name = os.path.join(checkpoint_path,
                                       'model_epoch'+str(epoch+1)+'.ckpt')
        save_path = saver.save(sess, checkpoint_name)

        print("{} Model checkpoint saved at {}".format(datetime.now(),
                                                       checkpoint_name))
test.py

# -*- coding: utf-8 -*-
"""
Created on Sat Aug 11 22:04:36 2018

@author: Administrator
"""
import tensorflow as tf
from alexnet import AlexNet             # import训练好的网络
import matplotlib.pyplot as plt

class_name = ['cat', 'dog']             # 自定义猫狗标签


def test_image(path_image, num_class, weights_path='Default'):
    # 把新图片进行转换
    img_string = tf.read_file(path_image)
    img_decoded = tf.image.decode_png(img_string, channels=3)
    # img_decoded = tf.image.decode_jpeg(img_string, channels=3)
    img_resized = tf.image.resize_images(img_decoded, [227, 227])
    img_resized = tf.reshape(img_resized, shape=[1, 227, 227, 3])
    
    # 图片通过AlexNet
    model = AlexNet(img_resized, 0.5, 2, skip_layer='', weights_path=weights_path)
    score = tf.nn.softmax(model.fc8)
    max = tf.arg_max(score, 1)
    saver = tf.train.Saver()

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        saver.restore(sess, "D:/tensorflow/bvlc_alexnet/finetune_alexnet_with_tensorflow-master/checkpoints/model_epoch10.ckpt") # 导入训练好的参数
        # score = model.fc8
        print(sess.run(model.fc8))
        prob = sess.run(max)[0]

        # 在matplotlib中观测分类结果
        plt.imshow(img_decoded.eval())
        plt.title("Class:" + class_name[prob])
        plt.show()


test_image('./test/20.png', num_class=2) # 输入一张新图片

If you do not want to touch the code any further than necessary you have to provide two `.txt` files to the script (`train.txt` and `val.txt`). Each of them list the complete path to your train/val images together with the class number in the following structure.

```
Example train.txt:
/path/to/train/image1.png 0
/path/to/train/image2.png 1
/path/to/train/image3.png 2
/path/to/train/image4.png 0

你可能感兴趣的:(TensorFlow)