Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。Celery 是调用其Worker 组件来完成具体任务处理。
$ celery --app=proj worker -l INFO
$ celery -A proj worker -l INFO -Q hipri,lopri
$ celery -A proj worker --concurrency=4
$ celery -A proj worker --concurrency=1000 -P eventlet
$ celery worker --autoscale=10,0
所以我们本文就来讲解 worker 的启动过程。
我们回顾下 Celery 的结构。Celery的架构图如下所示:
+-----------+ +--------------+
| Producer | | Celery Beat |
+-------+---+ +----+---------+
| |
| |
v v
+-------------------------+
| Broker |
+------------+------------+
|
|
|
+-------------------------------+
| | |
v v v
+----+-----+ +----+------+ +-----+----+
| Exchange | | Exchange | | Exchange |
+----+-----+ +----+------+ +----+-----+
| | |
v v v
+-----+ +-------+ +-------+
|queue| | queue | | queue |
+--+--+ +---+---+ +---+---+
| | |
| | |
v v v
+---------+ +--------+ +----------+
| worker | | Worker | | Worker |
+-----+---+ +---+----+ +----+-----+
| | |
| | |
+-----------------------------+
|
|
v
+---+-----+
| backend |
+---------+
其实网上难以找到调试Celery worker的办法。我们可以去其源码看看,发现如下:
# def test_worker_main(self):
# from celery.bin import worker as worker_bin
#
# class worker(worker_bin.worker):
#
# def execute_from_commandline(self, argv):
# return argv
#
# prev, worker_bin.worker = worker_bin.worker, worker
# try:
# ret = self.app.worker_main(argv=['--version'])
# assert ret == ['--version']
# finally:
# worker_bin.worker = prev
所以我们可以模仿来进行,使用如下启动worker,进行调试。
from celery import Celery
app = Celery('tasks', broker='redis://localhost:6379')
@app.task()
def add(x, y):
return x + y
if __name__ == '__main__':
app.worker_main(argv=['worker'])
当启动一个worker的时候,这个worker会与broker建立链接(tcp长链接),然后如果有数据传输,则会创建相应的channel, 这个连接可以有多个channel。然后,worker就会去borker的队列里面取相应的task来进行消费了,这也是典型的消费者生产者模式。
这个worker主要是有四部分组成的,task_pool, consumer, scheduler, mediator。其中,task_pool主要是用来存放的是一些worker,当启动了一个worker,并且提供并发参数的时候,会将一些worker放在这里面。
celery默认的并发方式是prefork,也就是多进程的方式,这里只是celery对multiprocessing pool进行了轻量的改造,然后给了一个新的名字叫做prefork,这个pool与多进程的进程池的区别就是这个task_pool只是存放一些运行的worker。
consumer也就是消费者,主要是从broker那里接受一些message,然后将message转化为celery.worker.request.Request
的一个实例。
Celery 在适当的时候,会把这个请求包装进Task中,Task就是用装饰器app_celery.task()装饰的函数所生成的类,所以可以在自定义的任务函数中使用这个请求参数,获取一些关键的信息。此时,已经了解了task_pool和consumer。
接下来,这个worker具有两套数据结构,这两套数据结构是并行运行的,他们分别是 ‘ET时刻表’ 、就绪队列。
就绪队列:那些 立刻就需要运行的task, 这些task到达worker的时候会被放到这个就绪队列中等待consumer执行。
我们下面看看如何启动Celery。
程序首先会来到Celery类,这是Celery的应用。
可以看到主要就是:各种类名称,TLS, 初始化之后的各种signal。
位置在:celery/app/base.py,其定义如下:
class Celery:
"""Celery application."""
amqp_cls = 'celery.app.amqp:AMQP'
backend_cls = None
events_cls = 'celery.app.events:Events'
loader_cls = None
log_cls = 'celery.app.log:Logging'
control_cls = 'celery.app.control:Control'
task_cls = 'celery.app.task:Task'
registry_cls = 'celery.app.registry:TaskRegistry'
#: Thread local storage.
_local = None
_fixups = None
_pool = None
_conf = None
_after_fork_registered = False
#: Signal sent when app is loading configuration.
on_configure = None
#: Signal sent after app has prepared the configuration.
on_after_configure = None
#: Signal sent after app has been finalized.
on_after_finalize = None
#: Signal sent by every new process after fork.
on_after_fork = None
对于我们的示例代码,入口是:
def worker_main(self, argv=None):
if argv is None:
argv = sys.argv
if 'worker' not in argv:
raise ValueError(
"The worker sub-command must be specified in argv.\n"
"Use app.start() to programmatically start other commands."
)
self.start(argv=argv)
celery/bin/celery.py 会进行添加 子command,我们可以看出来。
这些 Commnd 是可以在命令行作为子命令直接使用的。
celery.add_command(purge)
celery.add_command(call)
celery.add_command(beat)
celery.add_command(list_)
celery.add_command(result)
celery.add_command(migrate)
celery.add_command(status)
celery.add_command(worker)
celery.add_command(events)
celery.add_command(inspect)
celery.add_command(control)
celery.add_command(graph)
celery.add_command(upgrade)
celery.add_command(logtool)
celery.add_command(amqp)
celery.add_command(shell)
celery.add_command(multi)
每一个都是command。我们以worker为例,具体如下:
worker = {
CeleryDaemonCommand} <CeleryDaemonCommand worker>
add_help_option = {
bool} True
allow_extra_args = {
bool} False
allow_interspersed_args = {
bool} True
context_settings = {
dict: 1} {
'allow_extra_args': True}
epilog = {
NoneType} None
name = {
str} 'worker'
options_metavar = {
str} '[OPTIONS]'
params = {
list: 32} [<CeleryOption hostname>, ...... , <CeleryOption executable>]
然后会引入Celery 命令入口点 Celery。
def start(self, argv=None):
from celery.bin.celery import celery
celery.params[0].default = self
try:
celery.main(args=argv, standalone_mode=False)
except Exit as e:
return e.exit_code
finally:
celery.params[0].default = None
Celery 中,大量的成员变量是被cached_property修饰的。
使用 cached_property修饰过的函数,就变成是对象的属性,该对象第一次引用该属性时,会调用函数,对象第二次引用该属性时就直接从词典中取了,即 Caches the return value of the get method on first call。
很多知名Python项目都自己实现过 cached_property,比如Werkzeug,Django。
因为太有用,所以 Python 3.8 给 functools 模块添加了 cached_property 类,这样就有了官方的实现。
Celery 的代码举例如下:
@cached_property
def Worker(self):
"""Worker application.
"""
return self.subclass_with_self('celery.apps.worker:Worker')
@cached_property
def Task(self):
"""Base task class for this app."""
return self.create_task_cls()
@property
def pool(self):
"""Broker connection pool: :class:`~@pool`.
"""
if self._pool is None:
self._ensure_after_fork()
limit = self.conf.broker_pool_limit
pools.set_limit(limit)
self._pool = pools.connections[self.connection_for_write()]
return self._pool
所以,最终,Celery的内容应该是这样的:
app = {
Celery} <Celery tasks at 0x7fb8e1538400>
AsyncResult = {
type} <class 'celery.result.AsyncResult'>
Beat = {
type} <class 'celery.apps.beat.Beat'>
GroupResult = {
type} <class 'celery.result.GroupResult'>
Pickler = {
type} <class 'celery.app.utils.AppPickler'>
ResultSet = {
type} <class 'celery.result.ResultSet'>
Task = {
type} <class 'celery.app.task.Task'>
WorkController = {
type} <class 'celery.worker.worker.WorkController'>
Worker = {
type} <class 'celery.apps.worker.Worker'>
amqp = {
AMQP} <celery.app.amqp.AMQP object at 0x7fb8e2444860>
annotations = {
tuple: 0} ()
autofinalize = {
bool} True
backend = {
DisabledBackend} <celery.backends.base.DisabledBackend object at 0x7fb8e25fd668>
builtin_fixups = {
set: 1} {
'celery.fixups.django:fixup'}
clock = {
LamportClock} 1
conf = {
Settings: 163} Settings({
'broker_url': 'redis://localhost:6379', 'deprecated_settings': set(), 'cache_...
configured = {
bool} True
control = {
Control} <celery.app.control.Control object at 0x7fb8e2585f98>
current_task = {
NoneType} None
current_worker_task = {
NoneType} None
events = {
Events} <celery.app.events.Events object at 0x7fb8e25ecb70>
loader = {
AppLoader} <celery.loaders.app.AppLoader object at 0x7fb8e237a4a8>
main = {
str} 'tasks'
on_after_configure = {
Signal} <Signal: app.on_after_configure providing_args={
'source'}>
on_after_finalize = {
Signal} <Signal: app.on_after_finalize providing_args=set()>
on_after_fork = {
Signal} <Signal: app.on_after_fork providing_args=set()>
on_configure = {
Signal} <Signal: app.on_configure providing_args=set()>
pool = {
ConnectionPool} <kombu.connection.ConnectionPool object at 0x7fb8e26e9e80>
producer_pool = {
ProducerPool} <kombu.pools.ProducerPool object at 0x7fb8e26f02b0>
registry_cls = {
type} <class 'celery.app.registry.TaskRegistry'>
set_as_current = {
bool} True
steps = {
defaultdict: 2} defaultdict(<class 'set'>, {
'worker': set(), 'consumer': set()})
tasks = {
TaskRegistry: 10} {
'celery.chain': <@task: celery.chain of tasks at 0x7fb8e1538400>, 'celery.starmap': <@task: celery.starmap of tasks at 0x7fb8e1538400>, 'celery.chord': <@task: celery.chord of tasks at 0x7fb8e1538400>, 'celery.backend_cleanup': <@task: celery.backend_clea
user_options = {
defaultdict: 0} defaultdict(<class 'set'>, {
})
具体部分成员变量举例如下图:
+---------------------------------------+
| Celery |
| |
| Beat+-----------> celery.apps.beat.Beat
| |
| Task+-----------> celery.app.task.Task
| |
| WorkController+----------> celery.worker.worker.WorkController
| |
| Worker+-----------> celery.apps.worker.Worker
| |
| amqp +----------> celery.app.amqp.AMQP
| |
| control +----------> celery.app.control.Control
| |
| events +---------> celery.app.events.Events
| |
| loader +----------> celery.loaders.app.AppLoader
| |
| pool +----------> kombu.connection.ConnectionPool
| |
| producer_pool +----------> kombu.pools.ProducerPool
| |
| tasks +----------> TaskRegistry
| |
| |
+---------------------------------------+
Celery的命令总入口为celery方法,具体在:celery/bin/celery.py。
代码缩减版如下:
@click.pass_context
def celery(ctx, app, broker, result_backend, loader, config, workdir,
no_color, quiet, version):
"""Celery command entrypoint."""
if loader:
# Default app takes loader from this env (Issue #1066).
os.environ['CELERY_LOADER'] = loader
if broker:
os.environ['CELERY_BROKER_URL'] = broker
if result_backend:
os.environ['CELERY_RESULT_BACKEND'] = result_backend
if config:
os.environ['CELERY_CONFIG_MODULE'] = config
ctx.obj = CLIContext(app=app, no_color=no_color, workdir=workdir,
quiet=quiet)
# User options
worker.params.extend(ctx.obj.app.user_options.get('worker', []))
beat.params.extend(ctx.obj.app.user_options.get('beat', []))
events.params.extend(ctx.obj.app.user_options.get('events', []))
for command in celery.commands.values():
command.params.extend(ctx.obj.app.user_options.get('preload', []))
在方法中,会遍历celery.commands,拓展param,具体如下。这些 commands 就是之前刚刚提到的子Command:
celery.commands =
'report' = {
CeleryCommand} <CeleryCommand report>
'purge' = {
CeleryCommand} <CeleryCommand purge>
'call' = {
CeleryCommand} <CeleryCommand call>
'beat' = {
CeleryDaemonCommand} <CeleryDaemonCommand beat>
'list' = {
Group} <Group list>
'result' = {
CeleryCommand} <CeleryCommand result>
'migrate' = {
CeleryCommand} <CeleryCommand migrate>
'status' = {
CeleryCommand} <CeleryCommand status>
'worker' = {
CeleryDaemonCommand} <CeleryDaemonCommand worker>
'events' = {
CeleryDaemonCommand} <CeleryDaemonCommand events>
'inspect' = {
CeleryCommand} <CeleryCommand inspect>
'control' = {
CeleryCommand} <CeleryCommand control>
'graph' = {
Group} <Group graph>
'upgrade' = {
Group} <Group upgrade>
'logtool' = {
Group} <Group logtool>
'amqp' = {
Group} <Group amqp>
'shell' = {
CeleryCommand} <CeleryCommand shell>
'multi' = {
CeleryCommand} <CeleryCommand multi>
Work子命令是 Command 总命令的一员,也是我们直接在命令行加入 worker 参数时候,调用到的子命令。
$ celery -A proj worker -l INFO -Q hipri,lopri
worker 子命令继承了click.BaseCommand,为。
定义在celery/bin/worker.py。
因此如下代码间接调用到 worker 命令:
celery.main(args=argv, standalone_mode=False)
定义如下:
def worker(ctx, hostname=None, pool_cls=None, app=None, uid=None, gid=None,
loglevel=None, logfile=None, pidfile=None, statedb=None,
**kwargs):
"""Start worker instance.
Examples
--------
$ celery --app=proj worker -l INFO
$ celery -A proj worker -l INFO -Q hipri,lopri
$ celery -A proj worker --concurrency=4
$ celery -A proj worker --concurrency=1000 -P eventlet
$ celery worker --autoscale=10,0
"""
app = ctx.obj.app
maybe_drop_privileges(uid=uid, gid=gid)
worker = app.Worker(
hostname=hostname, pool_cls=pool_cls, loglevel=loglevel,
logfile=logfile, # node format handled by celery.app.log.setup
pidfile=node_format(pidfile, hostname),
statedb=node_format(statedb, hostname),
no_color=ctx.obj.no_color,
**kwargs)
worker.start()
return worker.exitcode
此时流程如下图,可以看到,从 Celery 应用就进入到了具体的 worker 命令:
+----------+
| User |
+----+-----+
|
| worker_main
|
v
+---------+------------+
| Celery |
| |
| Celery application |
| celery/app/base.py |
| |
+---------+------------+
|
| celery.main
|
v
+---------+------------+
| @click.pass_context |
| celery |
| |
| |
| CeleryCommand |
| celery/bin/celery.py |
| |
+---------+------------+
|
|
|
v
+----------+------------+
| @click.pass_context |
| worker |
| |
| |
| WorkerCommand |
| celery/bin/worker.py |
+-----------------------+
此时在该函数中会实例化app的Worker,Worker application 就是 worker 的实例。此时的app就是前面定义的Celery类的实例app。
定义在:celery/app/base.py。
@cached_property
def Worker(self):
"""Worker application.
See Also:
:class:`~@Worker`.
"""
return self.subclass_with_self('celery.apps.worker:Worker')
此时subclass_with_self利用了Python的type动态生成类实例的属性。
def subclass_with_self(self, Class, name=None, attribute='app',
reverse=None, keep_reduce=False, **kw):
"""Subclass an app-compatible class.
"""
Class = symbol_by_name(Class) # 导入该类
reverse = reverse if reverse else Class.__name__ # 判断是否传入值,如没有则使用类的名称
def __reduce__(self): # 定义的方法 该方法在pickle过程中会被调用
return _unpickle_appattr, (reverse, self.__reduce_args__())
attrs = dict(
{
attribute: self}, # 默认设置app的值为self
__module__=Class.__module__,
__doc__=Class.__doc__,
**kw) # 填充属性
if not keep_reduce:
attrs['__reduce__'] = __reduce__ # 如果默认则生成的类设置__reduce__方法
return type(bytes_if_py2(name or Class.__name__), (Class,), attrs) # 利用type实诚类实例
此时就已经从 worker 命令 得到了一个celery.apps.worker:Worker的实例,然后调用该实例的start方法,此时首先分析一下Worker类的实例化的过程。
我们先回顾下:
我们的执行从 worker_main 这个程序入口,来到了 Celery 应用。然后进入了 Celery Command,然后又进入到了 Worker 子Command,具体如下图。
+----------------------+
+----------+ | @cached_property |
| User | | Worker |
+----+-----+ +---> | |
| | | |
| worker_main | | Worker application |
| | | celery/app/base.py |
v | +----------------------+
+---------+------------+ |
| Celery | |
| | |
| Celery application | |
| celery/app/base.py | |
| | |
+---------+------------+ |
| |
| celery.main |
| |
v |
+---------+------------+ |
| @click.pass_context | |
| celery | |
| | |
| | |
| CeleryCommand | |
| celery/bin/celery.py | |
| | |
+---------+------------+ |
| |
| |
| |
v |
+----------+------------+ |
| @click.pass_context | |
| worker | |
| | |
| | |
| WorkerCommand | |
| celery/bin/worker.py | |
+-----------+-----------+ |
| |
+-----------------+
下面就会正式进入 worker,Celery 把 worker 的正式逻辑称为 work as a program。
我们在下文将接下来继续看后续 work as a program 的启动过程。
Celery 源码学习(二)多进程模型
celery原理初探
celery源码分析-wroker初始化分析(上)
celery源码分析-worker初始化分析(下)
celery worker初始化–DAG实现
python celery多worker、多队列、定时任务
celery 详细教程-- Worker篇
使用Celery
Celery 源码解析一:Worker 启动流程概述
Celery 源码解析二:Worker 的执行引擎
Celery 源码解析三:Task 对象的实现
Celery 源码解析四:定时任务的实现
Celery 源码解析五:远程控制管理
Celery 源码解析六:Events 的实现
Celery 源码解析七:Worker 之间的交互
Celery 源码解析八:State 和 Result
★★★★★★关于生活和技术的思考★★★★★★
微信公众账号:罗西的思考
如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,可以扫描下面二维码(或者长按识别二维码)关注个人公众号)。