[源码解析] 并行分布式框架 Celery 之 worker 启动 (1)

[源码解析] 并行分布式框架 Celery 之 worker 启动 (1)

文章目录

  • [源码解析] 并行分布式框架 Celery 之 worker 启动 (1)
    • 0x00 摘要
    • 0x01 Celery的架构
    • 0x02 示例代码
    • 0x03 逻辑概述
    • 0x04 Celery应用
      • 4.1 添加子command
      • 4.2 入口点
      • 4.3 缓存属性cached_property
    • 0x05 Celery 命令
    • 0x06 worker 子命令
    • 0x07 Worker application
    • 0xFF 参考

0x00 摘要

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。Celery 是调用其Worker 组件来完成具体任务处理。

$ celery --app=proj worker -l INFO
$ celery -A proj worker -l INFO -Q hipri,lopri
$ celery -A proj worker --concurrency=4
$ celery -A proj worker --concurrency=1000 -P eventlet
$ celery worker --autoscale=10,0

所以我们本文就来讲解 worker 的启动过程。

0x01 Celery的架构

我们回顾下 Celery 的结构。Celery的架构图如下所示:

 +-----------+            +--------------+
 | Producer  |            |  Celery Beat |
 +-------+---+            +----+---------+
         |                     |
         |                     |
         v                     v

       +-------------------------+
       |          Broker         |
       +------------+------------+
                    |
                    |
                    |
     +-------------------------------+
     |              |                |
     v              v                v
+----+-----+   +----+------+   +-----+----+
| Exchange |   |  Exchange |   | Exchange |
+----+-----+   +----+------+   +----+-----+
     |              |               |
     v              v               v

  +-----+       +-------+       +-------+
  |queue|       | queue |       | queue |
  +--+--+       +---+---+       +---+---+
     |              |               |
     |              |               |
     v              v               v

+---------+     +--------+     +----------+
| worker  |     | Worker |     |  Worker  |
+-----+---+     +---+----+     +----+-----+
      |             |               |
      |             |               |
      +-----------------------------+
                    |
                    |
                    v
                +---+-----+
                | backend |
                +---------+

0x02 示例代码

其实网上难以找到调试Celery worker的办法。我们可以去其源码看看,发现如下:

# def test_worker_main(self):
#     from celery.bin import worker as worker_bin
#
#     class worker(worker_bin.worker):
#
#         def execute_from_commandline(self, argv):
#             return argv
#
#     prev, worker_bin.worker = worker_bin.worker, worker
#     try:
#         ret = self.app.worker_main(argv=['--version'])
#         assert ret == ['--version']
#     finally:
#         worker_bin.worker = prev

所以我们可以模仿来进行,使用如下启动worker,进行调试。

from celery import Celery

app = Celery('tasks', broker='redis://localhost:6379')

@app.task()
def add(x, y):
    return x + y

if __name__ == '__main__':
    app.worker_main(argv=['worker'])

0x03 逻辑概述

当启动一个worker的时候,这个worker会与broker建立链接(tcp长链接),然后如果有数据传输,则会创建相应的channel, 这个连接可以有多个channel。然后,worker就会去borker的队列里面取相应的task来进行消费了,这也是典型的消费者生产者模式。

这个worker主要是有四部分组成的,task_pool, consumer, scheduler, mediator。其中,task_pool主要是用来存放的是一些worker,当启动了一个worker,并且提供并发参数的时候,会将一些worker放在这里面。

celery默认的并发方式是prefork,也就是多进程的方式,这里只是celery对multiprocessing pool进行了轻量的改造,然后给了一个新的名字叫做prefork,这个pool与多进程的进程池的区别就是这个task_pool只是存放一些运行的worker。

consumer也就是消费者,主要是从broker那里接受一些message,然后将message转化为celery.worker.request.Request 的一个实例。

Celery 在适当的时候,会把这个请求包装进Task中,Task就是用装饰器app_celery.task()装饰的函数所生成的类,所以可以在自定义的任务函数中使用这个请求参数,获取一些关键的信息。此时,已经了解了task_pool和consumer。

接下来,这个worker具有两套数据结构,这两套数据结构是并行运行的,他们分别是 ‘ET时刻表’ 、就绪队列。

就绪队列:那些 立刻就需要运行的task, 这些task到达worker的时候会被放到这个就绪队列中等待consumer执行。

我们下面看看如何启动Celery

0x04 Celery应用

程序首先会来到Celery类,这是Celery的应用。

可以看到主要就是:各种类名称,TLS, 初始化之后的各种signal。

位置在:celery/app/base.py,其定义如下:

class Celery:
    """Celery application."""

    amqp_cls = 'celery.app.amqp:AMQP'
    backend_cls = None
    events_cls = 'celery.app.events:Events'
    loader_cls = None
    log_cls = 'celery.app.log:Logging'
    control_cls = 'celery.app.control:Control'
    task_cls = 'celery.app.task:Task'
    registry_cls = 'celery.app.registry:TaskRegistry'

    #: Thread local storage.
    _local = None
    _fixups = None
    _pool = None
    _conf = None
    _after_fork_registered = False

    #: Signal sent when app is loading configuration.
    on_configure = None

    #: Signal sent after app has prepared the configuration.
    on_after_configure = None

    #: Signal sent after app has been finalized.
    on_after_finalize = None

    #: Signal sent by every new process after fork.
    on_after_fork = None

对于我们的示例代码,入口是:

def worker_main(self, argv=None):
    if argv is None:
        argv = sys.argv

    if 'worker' not in argv:
        raise ValueError(
            "The worker sub-command must be specified in argv.\n"
            "Use app.start() to programmatically start other commands."
        )

    self.start(argv=argv)

4.1 添加子command

celery/bin/celery.py 会进行添加 子command,我们可以看出来。

这些 Commnd 是可以在命令行作为子命令直接使用的

celery.add_command(purge)
celery.add_command(call)
celery.add_command(beat)
celery.add_command(list_)
celery.add_command(result)
celery.add_command(migrate)
celery.add_command(status)
celery.add_command(worker)
celery.add_command(events)
celery.add_command(inspect)
celery.add_command(control)
celery.add_command(graph)
celery.add_command(upgrade)
celery.add_command(logtool)
celery.add_command(amqp)
celery.add_command(shell)
celery.add_command(multi)

每一个都是command。我们以worker为例,具体如下:

worker = {
     CeleryDaemonCommand} <CeleryDaemonCommand worker>
 add_help_option = {
     bool} True
 allow_extra_args = {
     bool} False
 allow_interspersed_args = {
     bool} True
 context_settings = {
     dict: 1} {
     'allow_extra_args': True}
 epilog = {
     NoneType} None
 name = {
     str} 'worker'
 options_metavar = {
     str} '[OPTIONS]'
 params = {
     list: 32} [<CeleryOption hostname>, ...... , <CeleryOption executable>]

4.2 入口点

然后会引入Celery 命令入口点 Celery。

def start(self, argv=None):
    from celery.bin.celery import celery

    celery.params[0].default = self

    try:
        celery.main(args=argv, standalone_mode=False)
    except Exit as e:
        return e.exit_code
    finally:
        celery.params[0].default = None

4.3 缓存属性cached_property

Celery 中,大量的成员变量是被cached_property修饰的

使用 cached_property修饰过的函数,就变成是对象的属性,该对象第一次引用该属性时,会调用函数,对象第二次引用该属性时就直接从词典中取了,即 Caches the return value of the get method on first call。

很多知名Python项目都自己实现过 cached_property,比如Werkzeug,Django。

因为太有用,所以 Python 3.8 给 functools 模块添加了 cached_property 类,这样就有了官方的实现。

Celery 的代码举例如下:

    @cached_property
    def Worker(self):
        """Worker application.
        """
        return self.subclass_with_self('celery.apps.worker:Worker')

    @cached_property
    def Task(self):
        """Base task class for this app."""
        return self.create_task_cls()

    @property
    def pool(self):
        """Broker connection pool: :class:`~@pool`.
        """
        if self._pool is None:
            self._ensure_after_fork()
            limit = self.conf.broker_pool_limit
            pools.set_limit(limit)
            self._pool = pools.connections[self.connection_for_write()]
        return self._pool

所以,最终,Celery的内容应该是这样的:

app = {
     Celery} <Celery tasks at 0x7fb8e1538400>
 AsyncResult = {
     type} <class 'celery.result.AsyncResult'>
 Beat = {
     type} <class 'celery.apps.beat.Beat'>
 GroupResult = {
     type} <class 'celery.result.GroupResult'>
 Pickler = {
     type} <class 'celery.app.utils.AppPickler'>
 ResultSet = {
     type} <class 'celery.result.ResultSet'>
 Task = {
     type} <class 'celery.app.task.Task'>
 WorkController = {
     type} <class 'celery.worker.worker.WorkController'>
 Worker = {
     type} <class 'celery.apps.worker.Worker'>
 amqp = {
     AMQP} <celery.app.amqp.AMQP object at 0x7fb8e2444860>
 annotations = {
     tuple: 0} ()
 autofinalize = {
     bool} True
 backend = {
     DisabledBackend} <celery.backends.base.DisabledBackend object at 0x7fb8e25fd668>
 builtin_fixups = {
     set: 1} {
     'celery.fixups.django:fixup'}
 clock = {
     LamportClock} 1
 conf = {
     Settings: 163} Settings({
     'broker_url': 'redis://localhost:6379', 'deprecated_settings': set(), 'cache_...
 configured = {
     bool} True
 control = {
     Control} <celery.app.control.Control object at 0x7fb8e2585f98>
 current_task = {
     NoneType} None
 current_worker_task = {
     NoneType} None
 events = {
     Events} <celery.app.events.Events object at 0x7fb8e25ecb70>
 loader = {
     AppLoader} <celery.loaders.app.AppLoader object at 0x7fb8e237a4a8>
 main = {
     str} 'tasks'
 on_after_configure = {
     Signal} <Signal: app.on_after_configure providing_args={
     'source'}>
 on_after_finalize = {
     Signal} <Signal: app.on_after_finalize providing_args=set()>
 on_after_fork = {
     Signal} <Signal: app.on_after_fork providing_args=set()>
 on_configure = {
     Signal} <Signal: app.on_configure providing_args=set()>
 pool = {
     ConnectionPool} <kombu.connection.ConnectionPool object at 0x7fb8e26e9e80>
 producer_pool = {
     ProducerPool} <kombu.pools.ProducerPool object at 0x7fb8e26f02b0>
 registry_cls = {
     type} <class 'celery.app.registry.TaskRegistry'>
 set_as_current = {
     bool} True
 steps = {
     defaultdict: 2} defaultdict(<class 'set'>, {
     'worker': set(), 'consumer': set()})
 tasks = {
     TaskRegistry: 10} {
     'celery.chain': <@task: celery.chain of tasks at 0x7fb8e1538400>, 'celery.starmap': <@task: celery.starmap of tasks at 0x7fb8e1538400>, 'celery.chord': <@task: celery.chord of tasks at 0x7fb8e1538400>, 'celery.backend_cleanup': <@task: celery.backend_clea
 user_options = {
     defaultdict: 0} defaultdict(<class 'set'>, {
     })

具体部分成员变量举例如下图:

+---------------------------------------+
|  Celery                               |
|                                       |
|                              Beat+-----------> celery.apps.beat.Beat
|                                       |
|                              Task+-----------> celery.app.task.Task
|                                       |
|                     WorkController+----------> celery.worker.worker.WorkController
|                                       |
|                            Worker+-----------> celery.apps.worker.Worker
|                                       |
|                              amqp +----------> celery.app.amqp.AMQP
|                                       |
|                           control +----------> celery.app.control.Control
|                                       |
|                            events  +---------> celery.app.events.Events
|                                       |
|                            loader +----------> celery.loaders.app.AppLoader
|                                       |
|                              pool +----------> kombu.connection.ConnectionPool
|                                       |
|                     producer_pool +----------> kombu.pools.ProducerPool
|                                       |
|                             tasks +----------> TaskRegistry
|                                       |
|                                       |
+---------------------------------------+

0x05 Celery 命令

Celery的命令总入口为celery方法,具体在:celery/bin/celery.py。

代码缩减版如下:

@click.pass_context
def celery(ctx, app, broker, result_backend, loader, config, workdir,
           no_color, quiet, version):
    """Celery command entrypoint."""

    if loader:
        # Default app takes loader from this env (Issue #1066).
        os.environ['CELERY_LOADER'] = loader
    if broker:
        os.environ['CELERY_BROKER_URL'] = broker
    if result_backend:
        os.environ['CELERY_RESULT_BACKEND'] = result_backend
    if config:
        os.environ['CELERY_CONFIG_MODULE'] = config
    ctx.obj = CLIContext(app=app, no_color=no_color, workdir=workdir,
                         quiet=quiet)

    # User options
    worker.params.extend(ctx.obj.app.user_options.get('worker', []))
    beat.params.extend(ctx.obj.app.user_options.get('beat', []))
    events.params.extend(ctx.obj.app.user_options.get('events', []))

    for command in celery.commands.values():
        command.params.extend(ctx.obj.app.user_options.get('preload', []))

在方法中,会遍历celery.commands,拓展param,具体如下。这些 commands 就是之前刚刚提到的子Command:

celery.commands = 
 'report' = {
     CeleryCommand} <CeleryCommand report>
 'purge' = {
     CeleryCommand} <CeleryCommand purge>
 'call' = {
     CeleryCommand} <CeleryCommand call>
 'beat' = {
     CeleryDaemonCommand} <CeleryDaemonCommand beat>
 'list' = {
     Group} <Group list>
 'result' = {
     CeleryCommand} <CeleryCommand result>
 'migrate' = {
     CeleryCommand} <CeleryCommand migrate>
 'status' = {
     CeleryCommand} <CeleryCommand status>
 'worker' = {
     CeleryDaemonCommand} <CeleryDaemonCommand worker>
 'events' = {
     CeleryDaemonCommand} <CeleryDaemonCommand events>
 'inspect' = {
     CeleryCommand} <CeleryCommand inspect>
 'control' = {
     CeleryCommand} <CeleryCommand control>
 'graph' = {
     Group} <Group graph>
 'upgrade' = {
     Group} <Group upgrade>
 'logtool' = {
     Group} <Group logtool>
 'amqp' = {
     Group} <Group amqp>
 'shell' = {
     CeleryCommand} <CeleryCommand shell>
 'multi' = {
     CeleryCommand} <CeleryCommand multi>

0x06 worker 子命令

Work子命令是 Command 总命令的一员,也是我们直接在命令行加入 worker 参数时候,调用到的子命令。

$ celery -A proj worker -l INFO -Q hipri,lopri

worker 子命令继承了click.BaseCommand,为。

定义在celery/bin/worker.py。

因此如下代码间接调用到 worker 命令:

celery.main(args=argv, standalone_mode=False)

定义如下:

def worker(ctx, hostname=None, pool_cls=None, app=None, uid=None, gid=None,
           loglevel=None, logfile=None, pidfile=None, statedb=None,
           **kwargs):
    """Start worker instance.

    Examples
    --------
    $ celery --app=proj worker -l INFO
    $ celery -A proj worker -l INFO -Q hipri,lopri
    $ celery -A proj worker --concurrency=4
    $ celery -A proj worker --concurrency=1000 -P eventlet
    $ celery worker --autoscale=10,0

    """
    app = ctx.obj.app
    maybe_drop_privileges(uid=uid, gid=gid)
    worker = app.Worker(
        hostname=hostname, pool_cls=pool_cls, loglevel=loglevel,
        logfile=logfile,  # node format handled by celery.app.log.setup
        pidfile=node_format(pidfile, hostname),
        statedb=node_format(statedb, hostname),
        no_color=ctx.obj.no_color,
        **kwargs)
    worker.start()
    return worker.exitcode

此时流程如下图,可以看到,从 Celery 应用就进入到了具体的 worker 命令:

      +----------+
      |   User   |
      +----+-----+
           |
           |  worker_main
           |
           v
 +---------+------------+
 |        Celery        |
 |                      |
 |  Celery application  |
 |  celery/app/base.py  |
 |                      |
 +---------+------------+
           |
           |  celery.main
           |
           v
 +---------+------------+
 |  @click.pass_context |
 |       celery         |
 |                      |
 |                      |
 |    CeleryCommand     |
 | celery/bin/celery.py |
 |                      |
 +---------+------------+
           |
           |
           |
           v
+----------+------------+
|   @click.pass_context |
|        worker         |
|                       |
|                       |
|     WorkerCommand     |
| celery/bin/worker.py  |
+-----------------------+

0x07 Worker application

此时在该函数中会实例化app的Worker,Worker application 就是 worker 的实例此时的app就是前面定义的Celery类的实例app

定义在:celery/app/base.py。

@cached_property
def Worker(self):
    """Worker application.

    See Also:
        :class:`~@Worker`.
    """
    return self.subclass_with_self('celery.apps.worker:Worker')

此时subclass_with_self利用了Python的type动态生成类实例的属性。

def subclass_with_self(self, Class, name=None, attribute='app',
                       reverse=None, keep_reduce=False, **kw):
    """Subclass an app-compatible class.
    """
    Class = symbol_by_name(Class)                               # 导入该类
    reverse = reverse if reverse else Class.__name__            # 判断是否传入值,如没有则使用类的名称

    def __reduce__(self):                                       # 定义的方法 该方法在pickle过程中会被调用
        return _unpickle_appattr, (reverse, self.__reduce_args__()) 

    attrs = dict(
        {
     attribute: self},                                      # 默认设置app的值为self
        __module__=Class.__module__,    
        __doc__=Class.__doc__,
        **kw)                                                   # 填充属性
    if not keep_reduce:                                         
        attrs['__reduce__'] = __reduce__                        # 如果默认则生成的类设置__reduce__方法

    return type(bytes_if_py2(name or Class.__name__), (Class,), attrs) # 利用type实诚类实例

此时就已经从 worker 命令 得到了一个celery.apps.worker:Worker的实例,然后调用该实例的start方法,此时首先分析一下Worker类的实例化的过程。

我们先回顾下:

我们的执行从 worker_main 这个程序入口,来到了 Celery 应用。然后进入了 Celery Command,然后又进入到了 Worker 子Command,具体如下图。

                                     +----------------------+
      +----------+                   |  @cached_property    |
      |   User   |                   |      Worker          |
      +----+-----+            +--->  |                      |
           |                  |      |                      |
           |  worker_main     |      |  Worker application  |
           |                  |      |  celery/app/base.py  |
           v                  |      +----------------------+
 +---------+------------+     |
 |        Celery        |     |
 |                      |     |
 |  Celery application  |     |
 |  celery/app/base.py  |     |
 |                      |     |
 +---------+------------+     |
           |                  |
           |  celery.main     |
           |                  |
           v                  |
 +---------+------------+     |
 |  @click.pass_context |     |
 |       celery         |     |
 |                      |     |
 |                      |     |
 |    CeleryCommand     |     |
 | celery/bin/celery.py |     |
 |                      |     |
 +---------+------------+     |
           |                  |
           |                  |
           |                  |
           v                  |
+----------+------------+     |
|   @click.pass_context |     |
|        worker         |     |
|                       |     |
|                       |     |
|     WorkerCommand     |     |
| celery/bin/worker.py  |     |
+-----------+-----------+     |
            |                 |
            +-----------------+

下面就会正式进入 worker,Celery 把 worker 的正式逻辑称为 work as a program。

我们在下文将接下来继续看后续 work as a program 的启动过程。

0xFF 参考

Celery 源码学习(二)多进程模型

celery原理初探

celery源码分析-wroker初始化分析(上)

celery源码分析-worker初始化分析(下)

celery worker初始化–DAG实现

python celery多worker、多队列、定时任务

celery 详细教程-- Worker篇

使用Celery

Celery 源码解析一:Worker 启动流程概述

Celery 源码解析二:Worker 的执行引擎

Celery 源码解析三:Task 对象的实现

Celery 源码解析四:定时任务的实现

Celery 源码解析五:远程控制管理

Celery 源码解析六:Events 的实现

Celery 源码解析七:Worker 之间的交互

Celery 源码解析八:State 和 Result

★★★★★★关于生活和技术的思考★★★★★★

微信公众账号:罗西的思考

如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,可以扫描下面二维码(或者长按识别二维码)关注个人公众号)。

在这里插入图片描述

你可能感兴趣的:(008_分布式,016_消息队列,python,Celery,分布式,任务队列,消息队列)