[源码分析] 分布式任务队列 Celery 之 发送Task & AMQP

[源码分析] 分布式任务队列 Celery 之 发送Task & AMQP

文章目录

  • [源码分析] 分布式任务队列 Celery 之 发送Task & AMQP
    • 0x00 摘要
    • 0x01 示例代码
      • 1.1 服务端
      • 1.2 客户端
    • 0x02 系统启动
      • 2.1 产生Celery
      • 2.2 task 装饰器
        • 2.2.1 添加任务
        • 2.2.2 绑定
      • 2.3 小结
    • 0x03 amqp类
      • 3.1 生成
      • 3.2 定义
    • 0x04 发送Task
      • 4.1 apply_async in task
      • 4.2 send_task
      • 4.3 生成消息内容
      • 4.4 send_task_message in amqp
      • 4.5 publish in producer
      • 4.6 Redis Client
      • 4.7 redis 内容
        • 4.7.1 delivery_tag 作用
        • 4.7.2 delivery_tag 何时生成
    • 0xFF 参考

0x00 摘要

Celery是一个简单、灵活且可靠的,处理大量消息的分布式系统,专注于实时处理的异步任务队列,同时也支持任务调度。

在之前的文章中,我们看到了关于Task的分析,本文我们重点看看在客户端如何发送Task,以及 Celery 的amqp对象如何使用。

在阅读之前,我们依然要提出几个问题,以此作为阅读时候的指引:

  • 客户端启动时候,Celery 应用 和 用户自定义 Task 是如何生成的?
  • Task 装饰器起到了什么作用?
  • 发送 Task 时候,消息是如何组装的?
  • 发送 Task 时候,采用什么媒介(模块)来发送?amqp?
  • Task 发送出去之后,在 Redis 之中如何存储?

说明:在整理文章时,发现漏发了一篇,从而会影响大家阅读思路,特此补上,请大家谅解。

[源码分析] 消息队列 Kombu 之 mailbox

[源码分析] 消息队列 Kombu 之 Hub

[源码分析] 消息队列 Kombu 之 Consumer

[源码分析] 消息队列 Kombu 之 Producer

[源码分析] 消息队列 Kombu 之 启动过程

[源码解析] 消息队列 Kombu 之 基本架构

[ 源码解析] 并行分布式框架 Celery 之架构 (1)

[ 源码解析] 并行分布式任务队列 Celery 之架构 (2)

[ 源码解析] 并行分布式框架 Celery 之 worker 启动 (1)

[源码解析] 并行分布式框架 Celery 之 worker 启动 (2)

[ 源码解析] 并行分布式任务队列 Celery 之启动 Consumer

[ 源码解析] 并行分布式任务队列 Celery 之 Task是什么

[从源码学设计]celery 之 发送Task & AMQP 就是本文,从客户端角度讲解发送Task

[源码解析] 并行分布式任务队列 Celery 之 消费动态流程 下一篇文章从服务端角度讲解收到 Task 如何消费

[源码解析] 并行分布式任务队列 Celery 之 多进程模型

0x01 示例代码

我们首先给出示例代码。

1.1 服务端

示例代码服务端如下,这里使用了装饰器来包装待执行任务。

from celery import Celery

app = Celery('myTest', broker='redis://localhost:6379')

@app.task
def add(x,y):
    return x+y

if __name__ == '__main__':
    app.worker_main(argv=['worker'])

1.2 客户端

客户端发送代码如下,就是调用 add Task 来做加法计算:

from myTest import add
re = add.apply_async((2,17))

我们开始具体介绍,以下均是客户端的执行序列。

0x02 系统启动

我们首先要介绍 在客户端,Celery 系统和 task(实例) 是如何启动的。

2.1 产生Celery

如下代码首先会执行 myTest 这个 Celery。

app = Celery('myTest', broker='redis://localhost:6379')

2.2 task 装饰器

Celery 使用了装饰器来包装待执行任务(因为各种语言的类似概念,在本文中可能会混用装饰器或者注解这两个术语)

@app.task
def add(x,y):
    return x+y

task这个装饰器具体执行其实就是返回 _create_task_cls 这个内部函数执行的结果

这个函数返回一个Proxy,Proxy 在真正执行到的时候,会执行 _task_from_fun

_task_from_fun 的作用是:将该task添加到全局变量中,即 当调用 _task_from_fun 时会将该任务添加到app任务列表中,以此达到所有任务共享的目的这样客户端才能知道这个 task

    def task(self, *args, **opts):
        """Decorator to create a task class out of any callable. """
        if USING_EXECV and opts.get('lazy', True):
            from . import shared_task
            return shared_task(*args, lazy=False, **opts)

        def inner_create_task_cls(shared=True, filter=None, lazy=True, **opts):
            _filt = filter

            def _create_task_cls(fun):
                if shared:
                    def cons(app):
                        return app._task_from_fun(fun, **opts) # 将该task添加到全局变量中,当调用_task_from_fun时会将该任务添加到app任务列表中,以此达到所有任务共享的目的
                    cons.__name__ = fun.__name__
                    connect_on_app_finalize(cons)
                if not lazy or self.finalized:
                    ret = self._task_from_fun(fun, **opts)
                else:
                    # return a proxy object that evaluates on first use
                    ret = PromiseProxy(self._task_from_fun, (fun,), opts,
                                       __doc__=fun.__doc__)
                    self._pending.append(ret)
                if _filt:
                    return _filt(ret)
                return ret

            return _create_task_cls

        if len(args) == 1:
            if callable(args[0]):
                return inner_create_task_cls(**opts)(*args) #执行在这里
        return inner_create_task_cls(**opts)

我们具体分析下这个装饰器。

2.2.1 添加任务

在初始化过程中,为每个app添加该任务时,会调用到app._task_from_fun(fun, **options)

具体作用是:

  • 判断各种参数配置;
  • 动态创建task;
  • 将任务添加到_tasks任务中;
  • 用task的bind方法绑定相关属性到该实例上;

代码如下:

    def _task_from_fun(self, fun, name=None, base=None, bind=False, **options):

        name = name or self.gen_task_name(fun.__name__, fun.__module__)         # 如果传入了名字则使用,否则就使用moudle name的形式
        base = base or self.Task                                                # 是否传入Task,否则用类自己的Task类 默认celery.app.task:Task

        if name not in self._tasks:                                             # 如果要加入的任务名称不再_tasks中
            run = fun if bind else staticmethod(fun)                            # 是否bind该方法是则直接使用该方法,否则就置为静态方法
            task = type(fun.__name__, (base,), dict({
     
                'app': self,                                                    # 动态创建Task类实例
                'name': name,                                                   # Task的name
                'run': run,                                                     # task的run方法
                '_decorated': True,                                             # 是否装饰
                '__doc__': fun.__doc__,
                '__module__': fun.__module__,
                '__header__': staticmethod(head_from_fun(fun, bound=bind)),
                '__wrapped__': run}, **options))()                              
            # for some reason __qualname__ cannot be set in type()
            # so we have to set it here.
            try:
                task.__qualname__ = fun.__qualname__                            
            except AttributeError:
                pass
            self._tasks[task.name] = task                                       # 将任务添加到_tasks任务中
            task.bind(self)  # connects task to this app                        # 调用task的bind方法绑定相关属性到该实例上

            add_autoretry_behaviour(task, **options)
        else:
            task = self._tasks[name]
        return task  

2.2.2 绑定

bind方法的作用是:绑定相关属性到该实例上,因为只知道 task 名字或者代码是不够的,还需要在运行时候拿到 task 的实例

@classmethod
def bind(cls, app):
    was_bound, cls.__bound__ = cls.__bound__, True
    cls._app = app                                          # 设置类的_app属性
    conf = app.conf                                         # 获取app的配置信息
    cls._exec_options = None  # clear option cache

    if cls.typing is None:
        cls.typing = app.strict_typing

    for attr_name, config_name in cls.from_config:          # 设置类中的默认值
        if getattr(cls, attr_name, None) is None:           # 如果获取该属性为空
            setattr(cls, attr_name, conf[config_name])      # 使用app配置中的默认值

    # decorate with annotations from config.
    if not was_bound:
        cls.annotate()

        from celery.utils.threads import LocalStack
        cls.request_stack = LocalStack()                    # 使用线程栈保存数据

    # PeriodicTask uses this to add itself to the PeriodicTask schedule.
    cls.on_bound(app)

    return app

2.3 小结

至此,在客户端(使用者方),Celery 应用已经启动,一个task实例也已经生成,其属性都被绑定在实例上

0x03 amqp类

在客户端调用 apply_async 的时候,会调用 app.send_task 来具体发送任务,其中用到 amqp,所以我们首先讲讲 amqp 类。

3.1 生成

在 send_task 之中有如下代码,就是:

    def send_task(self, ....):
        """Send task by name.
        """
        parent = have_parent = None
        amqp = self.amqp # 此时生成

此时的 self 是 Celery 应用本身,具体内容我们打印出来看看,从下面我们可以看到 Celery 应用是什么样子。

self = {
     Celery} <Celery myTest at 0x1eeb5590488>
 AsyncResult = {
     type} <class 'celery.result.AsyncResult'>
 Beat = {
     type} <class 'celery.apps.beat.Beat'>
 GroupResult = {
     type} <class 'celery.result.GroupResult'>
 Pickler = {
     type} <class 'celery.app.utils.AppPickler'>
 ResultSet = {
     type} <class 'celery.result.ResultSet'>
 Task = {
     type} <class 'celery.app.task.Task'>
 WorkController = {
     type} <class 'celery.worker.worker.WorkController'>
 Worker = {
     type} <class 'celery.apps.worker.Worker'>
 amqp = {
     AMQP} <celery.app.amqp.AMQP object at 0x000001EEB5884188>
 amqp_cls = {
     str} 'celery.app.amqp:AMQP'
 backend = {
     DisabledBackend} <celery.backends.base.DisabledBackend object at 0x000001EEB584E248>
 clock = {
     LamportClock} 0
 control = {
     Control} <celery.app.control.Control object at 0x000001EEB57B37C8>
 events = {
     Events} <celery.app.events.Events object at 0x000001EEB56C7188>
 loader = {
     AppLoader} <celery.loaders.app.AppLoader object at 0x000001EEB5705408>
 main = {
     str} 'myTest'
 pool = {
     ConnectionPool} <kombu.connection.ConnectionPool object at 0x000001EEB57A9688>
 producer_pool = {
     ProducerPool} <kombu.pools.ProducerPool object at 0x000001EEB6297508>
 registry_cls = {
     type} <class 'celery.app.registry.TaskRegistry'>
 tasks = {
     TaskRegistry: 10} {
     'myTest.add': <@task: myTest.add of myTest at 0x1eeb5590488>, 'celery.accumulate': <@task: celery.accumulate of myTest at 0x1eeb5590488>, 'celery.chord_unlock': <@task: celery.chord_unlock of myTest at 0x1eeb5590488>, 'celery.chunks': <@task: celery.chunks of myTest at 0x1eeb5590488>, 'celery.backend_cleanup': <@task: celery.backend_cleanup of myTest at 0x1eeb5590488>, 'celery.group': <@task: celery.group of myTest at 0x1eeb5590488>, 'celery.map': <@task: celery.map of myTest at 0x1eeb5590488>, 'celery.chain': <@task: celery.chain of myTest at 0x1eeb5590488>, 'celery.starmap': <@task: celery.starmap of myTest at 0x1eeb5590488>, 'celery.chord': <@task: celery.chord of myTest at 0x1eeb5590488>}

堆栈为:

amqp, base.py:1205
__get__, objects.py:43
send_task, base.py:705
apply_async, task.py:565
<module>, myclient.py:4

为什么赋值语句就可以生成 amqp?是因为其被 cached_property 修饰。

使用 cached_property 修饰过的函数,就变成是对象的属性,该对象第一次引用该属性时,会调用函数,对象第二次引用该属性时就直接从词典中取了,即 Caches the return value of the get method on first call。

    @cached_property
    def amqp(self):
        """AMQP related functionality: :class:`~@amqp`."""
        return instantiate(self.amqp_cls, app=self)

3.2 定义

AMQP类就是对amqp协议实现的再一次封装,在这里其实就是对 kombu 类的再一次封装

class AMQP:
    """App AMQP API: app.amqp."""

    Connection = Connection
    Consumer = Consumer
    Producer = Producer

    #: compat alias to Connection
    BrokerConnection = Connection

    queues_cls = Queues

    #: Cached and prepared routing table.
    _rtable = None

    #: Underlying producer pool instance automatically
    #: set by the :attr:`producer_pool`.
    _producer_pool = None

    # Exchange class/function used when defining automatic queues.
    # For example, you can use ``autoexchange = lambda n: None`` to use the
    # AMQP default exchange: a shortcut to bypass routing
    # and instead send directly to the queue named in the routing key.
    autoexchange = None

具体内容我们打印出来看看,我们可以看到 amqp 是什么样子。

amqp = {
     AMQP}  
 BrokerConnection = {
     type} <class 'kombu.connection.Connection'>
 Connection = {
     type} <class 'kombu.connection.Connection'>
 Consumer = {
     type} <class 'kombu.messaging.Consumer'>
 Producer = {
     type} <class 'kombu.messaging.Producer'>
 app = {
     Celery} <Celery myTest at 0x252bd2903c8>
 argsrepr_maxsize = {
     int} 1024
 autoexchange = {
     NoneType} None
 default_exchange = {
     Exchange} Exchange celery(direct)
 default_queue = {
     Queue} <unbound Queue celery -> <unbound Exchange celery(direct)> -> celery>
 kwargsrepr_maxsize = {
     int} 1024
 producer_pool = {
     ProducerPool} <kombu.pools.ProducerPool object at 0x00000252BDC8F408>
 publisher_pool = {
     ProducerPool} <kombu.pools.ProducerPool object at 0x00000252BDC8F408>
 queues = {
     Queues: 1} {
     'celery': <unbound Queue celery -> <unbound Exchange celery(direct)> -> celery>}
 queues_cls = {
     type} <class 'celery.app.amqp.Queues'>
 router = {
     Router} <celery.app.routes.Router object at 0x00000252BDC6B248>
 routes = {
     tuple: 0} ()
 task_protocols = {
     dict: 2} {
     1: <bound method AMQP.as_task_v1 of <celery.app.amqp.AMQP object at 0x00000252BDC74148>>, 2: <bound method AMQP.as_task_v2 of <celery.app.amqp.AMQP object at 0x00000252BDC74148>>}
 utc = {
     bool} True
  _event_dispatcher = {
     EventDispatcher} <celery.events.dispatcher.EventDispatcher object at 0x00000252BE750348>
  _producer_pool = {
     ProducerPool} <kombu.pools.ProducerPool object at 0x00000252BDC8F408>
  _rtable = {
     tuple: 0} ()

具体逻辑如下:

+---------+
| Celery  |    +----------------------------+
|         |    |   celery.app.amqp.AMQP     |
|         |    |                            |
|         |    |                            |
|         |    |          BrokerConnection +----->  kombu.connection.Connection
|         |    |                            |
|   amqp+----->+          Connection       +----->  kombu.connection.Connection
|         |    |                            |
+---------+    |          Consumer         +----->  kombu.messaging.Consumer
               |                            |
               |          Producer         +----->  kombu.messaging.Producer
               |                            |
               |          producer_pool    +----->  kombu.pools.ProducerPool
               |                            |
               |          queues           +----->  celery.app.amqp.Queues
               |                            |
               |          router           +----->  celery.app.routes.Router
               +----------------------------+

0x04 发送Task

我们接着看看客户端如何发送task。

from myTest import add
re = add.apply_async((2,17))

总述下逻辑:

  • Producer 初始化过程完成了连接用的内容,比如调用self.connect方法,到预定的Transport类中连接载体,并初始化Chanel,self.chanel = self.connection;
  • 调用 Message 封装消息;
  • Exchange 将 routing_key 转为 queue;
  • 调用 amqp 发送消息;
  • Channel 负责最终消息发布;

我们下面详细解读下。

4.1 apply_async in task

这里重要的是几点:

  • 进行了组装待发送任务的任务的参数,如 connection,queue,exchange,routing_key等
  • 如果是 task_always_eager,则产生一个 Kombu . producer;即如果是配置了本地直接执行则本地执行直接返回结果
  • 否则,调用 amqp 来发送 task(我们主要看这里);

缩减版代码如下:

    def apply_async(self, args=None, kwargs=None, task_id=None, producer=None,
                    link=None, link_error=None, shadow=None, **options):
        """Apply tasks asynchronously by sending a message.
        """
        
        preopts = self._get_exec_options()
        options = dict(preopts, **options) if options else preopts

        app = self._get_app()
        if app.conf.task_always_eager:
            # 获取 producer
            with app.producer_or_acquire(producer) as eager_producer:      
                serializer = options.get('serializer')
                body = args, kwargs
                content_type, content_encoding, data = serialization.dumps(
                    body, serializer,
                )
                args, kwargs = serialization.loads(
                    data, content_type, content_encoding,
                    accept=[content_type]
                )
            with denied_join_result():
                return self.apply(args, kwargs, task_id=task_id or uuid(),
                                  link=link, link_error=link_error, **options)
        else:
            return app.send_task( #调用到这里
                self.name, args, kwargs, task_id=task_id, producer=producer,
                link=link, link_error=link_error, result_cls=self.AsyncResult,
                shadow=shadow, task_type=self,
                **options
            )

此时如下:

         1  apply_async       +-------------------+
                              |                   |
User  +---------------------> | task: myTest.add  |
                              |                   |
                              +-------------------+

4.2 send_task

此函数作用是生成任务信息,调用amqp发送任务:

  • 获取amqp实例;
  • 设置任务id,如果没有传入则生成任务id;
  • 生成路由值,如果没有则使用amqp的router;
  • 生成route信息;
  • 生成任务信息;
  • 如果有连接则生成生产者;
  • 发送任务消息;
  • 生成异步任务实例;
  • 返回结果;

这里调用到了 Celery 应用。为啥还要调用到 Celery 应用本身呢?Task 自身没有关于 MQ 的任何消息,而只有一个绑定的 Celery 对象,所以从抽象层面就只能交给 Celery 了,而 Celery 却包含了所有你需要的信息,是可以完成这个任务的。

具体如下:

def send_task(self, name, ...):
    """Send task by name.
    """
    parent = have_parent = None
    amqp = self.amqp                                                    # 获取amqp实例
    task_id = task_id or uuid()                                         # 设置任务id,如果没有传入则生成任务id
    producer = producer or publisher  # XXX compat                      # 生成这
    router = router or amqp.router                                      # 路由值,如果没有则使用amqp的router
    options = router.route(
        options, route_name or name, args, kwargs, task_type)           # 生成route信息

    message = amqp.create_task_message( # 生成任务信息
        task_id, name, args, kwargs, countdown, eta, group_id, group_index,
        expires, retries, chord,
        maybe_list(link), maybe_list(link_error),
        reply_to or self.thread_oid, time_limit, soft_time_limit,
        self.conf.task_send_sent_event,
        root_id, parent_id, shadow, chain,
        argsrepr=options.get('argsrepr'),
        kwargsrepr=options.get('kwargsrepr'),
    )

    if connection:
        producer = amqp.Producer(connection)                            # 如果有连接则生成生产者
    
    with self.producer_or_acquire(producer) as P:                       
        with P.connection._reraise_as_library_errors():
            self.backend.on_task_call(P, task_id)
            amqp.send_task_message(P, name, message, **options)         # 发送任务消息 
    
    result = (result_cls or self.AsyncResult)(task_id)                  # 生成异步任务实例
    if add_to_parent:
        if not have_parent:
            parent, have_parent = self.current_worker_task, True
        if parent:
            parent.add_trail(result)
    return result                                                       # 返回结果

此时如下:

         1  apply_async       +-------------------+
                              |                   |
User  +---------------------> | task: myTest.add  |
                              |                   |
                              +--------+----------+
                                       |
                                       |
                        2 send_task    |
                                       |
                                       v
                                +------+--------+
                                | Celery myTest |
                                |               |
                                +------+--------+
                                       |
                                       |
                  3 send_task_message  |
                                       |
                                       v
                               +-------+---------+
                               |      amqp       |
                               |                 |
                               |                 |
                               +-----------------+

4.3 生成消息内容

as_task_v2 会具体生成消息内容,消息体的预处理都是在这里完成的,例如检验和转换参数格式。

大家可以看到如果实现一个消息,需要用到几个大部分,这里奇怪的是,对于一个异步调用,task 名和 id 都是放在 headers 里头的,而参数什么的却是放在 body 里面:

  • headers,包括:task name, task id, expires, 等等;
  • 消息类型 和 编码方式:content-encoding,content-type;
  • 参数:这些就是 Celery 特有的,用来区分不同队列的,比如:exchange,routing_key 等等;
  • body : 就是消息体;

最终具体消息举例如下:

{
     
	"body": "W1syLCA4XSwge30sIHsiY2FsbGJhY2tzIjogbnVsbCwgImVycmJhY2tzIjogbnVsbCwgImNoYWluIjogbnVsbCwgImNob3JkIjogbnVsbH1d",
	"content-encoding": "utf-8",
	"content-type": "application/json",
	"headers": {
     
		"lang": "py",
		"task": "myTest.add",
		"id": "243aac4a-361b-4408-9e0c-856e2655b7b5",
		"shadow": null,
		"eta": null,
		"expires": null,
		"group": null,
		"group_index": null,
		"retries": 0,
		"timelimit": [null, null],
		"root_id": "243aac4a-361b-4408-9e0c-856e2655b7b5",
		"parent_id": null,
		"argsrepr": "(2, 8)",
		"kwargsrepr": "{}",
		"origin": "gen33652@DESKTOP-0GO3RPO"
	},
	"properties": {
     
		"correlation_id": "243aac4a-361b-4408-9e0c-856e2655b7b5",
		"reply_to": "b34fcf3d-da9a-3717-a76f-44b6a6362da1",
		"delivery_mode": 2,
		"delivery_info": {
     
			"exchange": "",
			"routing_key": "celery"
		},
		"priority": 0,
		"body_encoding": "base64",
		"delivery_tag": "fa1bc9c8-3709-4c02-9543-8d0fe3cf4e6c"
	}
}

具体代码如下,这里的 sent_event 是后续发送时候需要,并不体现在具体消息内容之中:

def as_task_v2(self, task_id, name, args=None, kwargs=None, ......):

    ......
    
    return task_message(
        headers={
     
            'lang': 'py',
            'task': name,
            'id': task_id,
            'shadow': shadow,
            'eta': eta,
            'expires': expires,
            'group': group_id,
            'group_index': group_index,
            'retries': retries,
            'timelimit': [time_limit, soft_time_limit],
            'root_id': root_id,
            'parent_id': parent_id,
            'argsrepr': argsrepr,
            'kwargsrepr': kwargsrepr,
            'origin': origin or anon_nodename()
        },
        properties={
     
            'correlation_id': task_id,
            'reply_to': reply_to or '',
        },
        body=(
            args, kwargs, {
     
                'callbacks': callbacks,
                'errbacks': errbacks,
                'chain': chain,
                'chord': chord,
            },
        ),
        sent_event={
     
            'uuid': task_id,
            'root_id': root_id,
            'parent_id': parent_id,
            'name': name,
            'args': argsrepr,
            'kwargs': kwargsrepr,
            'retries': retries,
            'eta': eta,
            'expires': expires,
        } if create_sent_event else None,
    )

4.4 send_task_message in amqp

amqp.send_task_message(P, name, message, **options) 是用来 amqp 发送任务。

该方法主要是组装待发送任务的参数,如connection,queue,exchange,routing_key等,调用 producer 的 publish 发送任务。

基本套路就是:

  • 获得 queue;
  • 获得 delivery_mode;
  • 获得 exchange;
  • 获取重试策略等;
  • 调用 producer 来发送消息;
        def send_task_message(producer, name, message,
                              exchange=None, routing_key=None, queue=None,
                              event_dispatcher=None,
                              retry=None, retry_policy=None,
                              serializer=None, delivery_mode=None,
                              compression=None, declare=None,
                              headers=None, exchange_type=None, **kwargs):
    				# 获得 queue, 获得 delivery_mode, 获得 exchange, 获取重试策略等

            if before_receivers:
                send_before_publish(
                    sender=name, body=body,
                    exchange=exchange, routing_key=routing_key,
                    declare=declare, headers=headers2,
                    properties=properties, retry_policy=retry_policy,
                )
            
            ret = producer.publish(
                body,
                exchange=exchange,
                routing_key=routing_key,
                serializer=serializer or default_serializer,
                compression=compression or default_compressor,
                retry=retry, retry_policy=_rp,
                delivery_mode=delivery_mode, declare=declare,
                headers=headers2,
                **properties
            )
            if after_receivers:
                send_after_publish(sender=name, body=body, headers=headers2,
                                   exchange=exchange, routing_key=routing_key)
 
            .....
  
            if sent_event: # 这里就处理了sent_event
                evd = event_dispatcher or default_evd
                exname = exchange
                if isinstance(exname, Exchange):
                    exname = exname.name
                sent_event.update({
     
                    'queue': qname,
                    'exchange': exname,
                    'routing_key': routing_key,
                })
                evd.publish('task-sent', sent_event,
                            producer, retry=retry, retry_policy=retry_policy)
            return ret
        return send_task_message

此时堆栈为:

send_task_message, amqp.py:473
send_task, base.py:749
apply_async, task.py:565
<module>, myclient.py:4

此时变量为:

qname = {
     str} 'celery'
queue = {
     Queue} <unbound Queue celery -> <unbound Exchange celery(direct)> -> celery>
 ContentDisallowed = {
     type} <class 'kombu.exceptions.ContentDisallowed'>
 alias = {
     NoneType} None
 attrs = {
     tuple: 18} (('name', None), ('exchange', None), ('routing_key', None), ('queue_arguments', None), ('binding_arguments', None), ('consumer_arguments', None), ('durable', <class 'bool'>), ('exclusive', <class 'bool'>), ('auto_delete', <class 'bool'>), ('no_ack', None), ('alias', None), ('bindings', <class 'list'>), ('no_declare', <class 'bool'>), ('expires', <class 'float'>), ('message_ttl', <class 'float'>), ('max_length', <class 'int'>), ('max_length_bytes', <class 'int'>), ('max_priority', <class 'int'>))
 auto_delete = {
     bool} False
 binding_arguments = {
     NoneType} None
 bindings = {
     set: 0} set()
 can_cache_declaration = {
     bool} True
 channel = {
     str} 'Traceback (most recent call last):\n  File "C:\\Program Files\\JetBrains\\PyCharm Community Edition 2020.2.2\\plugins\\python-ce\\helpers\\pydev\\_pydevd_bundle\\pydevd_resolver.py", line 178, in _getPyDictionary\n    attr = getattr(var, n)\n  File "C:\\User
 consumer_arguments = {
     NoneType} None
 durable = {
     bool} True
 exchange = {
     Exchange} Exchange celery(direct)
 exclusive = {
     bool} False
 expires = {
     NoneType} None
 is_bound = {
     bool} False
 max_length = {
     NoneType} None
 max_length_bytes = {
     NoneType} None
 max_priority = {
     NoneType} None
 message_ttl = {
     NoneType} None
 name = {
     str} 'celery'
 no_ack = {
     bool} False
 no_declare = {
     NoneType} None
 on_declared = {
     NoneType} None
 queue_arguments = {
     NoneType} None
 routing_key = {
     str} 'celery'
  _channel = {
     NoneType} None
  _is_bound = {
     bool} False
queues = {
     Queues: 1} {
     'celery': <unbound Queue celery -> <unbound Exchange celery(direct)> -> celery>}

此时逻辑如下:

         1  apply_async       +-------------------+
                              |                   |
User  +---------------------> | task: myTest.add  |
                              |                   |
                              +--------+----------+
                                       |
                                       |
                          2 send_task  |
                                       |
                                       v
                                +------+--------+
                                | Celery myTest |
                                |               |
                                +------+--------+
                                       |
                                       |
                  3 send_task_message  |
                                       |
                                       v
                               +-------+---------+
                               |      amqp       |
                               +-------+---------+
                                       |
                                       |
                            4 publish  |
                                       |
                                       v
                                  +----+------+
                                  | producer  |
                                  |           |
                                  +-----------+

4.5 publish in producer

在 produer 之中,调用 channel 来发送信息

def _publish(self, body, priority, content_type, content_encoding,
             headers, properties, routing_key, mandatory,
             immediate, exchange, declare):
    channel = self.channel
    message = channel.prepare_message(
        body, priority, content_type,
        content_encoding, headers, properties,
    )
    if declare:
        maybe_declare = self.maybe_declare
        [maybe_declare(entity) for entity in declare]

    # handle autogenerated queue names for reply_to
    reply_to = properties.get('reply_to')
    if isinstance(reply_to, Queue):
        properties['reply_to'] = reply_to.name
    return channel.basic_publish( # 发送消息
        message,
        exchange=exchange, routing_key=routing_key,
        mandatory=mandatory, immediate=immediate,
    )

变量为:

body = {
     str} '[[2, 8], {}, {"callbacks": null, "errbacks": null, "chain": null, "chord": null}]'
compression = {
     NoneType} None
content_encoding = {
     str} 'utf-8'
content_type = {
     str} 'application/json'
declare = {
     list: 1} [<unbound Queue celery -> <unbound Exchange celery(direct)> -> celery>]
delivery_mode = {
     int} 2
exchange = {
     str} ''
exchange_name = {
     str} ''
expiration = {
     NoneType} None
headers = {
     dict: 15} {
     'lang': 'py', 'task': 'myTest.add', 'id': 'af0e4c14-a618-41b4-9340-1479cb7cde4f', 'shadow': None, 'eta': None, 'expires': None, 'group': None, 'group_index': None, 'retries': 0, 'timelimit': [None, None], 'root_id': 'af0e4c14-a618-41b4-9340-1479cb7cde4f', 'parent_id': None, 'argsrepr': '(2, 8)', 'kwargsrepr': '{}', 'origin': 'gen11468@DESKTOP-0GO3RPO'}
immediate = {
     bool} False
mandatory = {
     bool} False
priority = {
     int} 0
properties = {
     dict: 3} {
     'correlation_id': 'af0e4c14-a618-41b4-9340-1479cb7cde4f', 'reply_to': '2c938063-64b8-35f5-ac9f-a1c0915b6f71', 'delivery_mode': 2}
retry = {
     bool} True
retry_policy = {
     dict: 4} {
     'max_retries': 3, 'interval_start': 0, 'interval_max': 1, 'interval_step': 0.2}
routing_key = {
     str} 'celery'
self = {
     Producer} <Producer: <promise: 0x1eeb62c44c8>>
serializer = {
     str} 'json'

此时逻辑为:

         1  apply_async       +-------------------+
                              |                   |
User  +---------------------> | task: myTest.add  |
                              |                   |
                              +--------+----------+
                                       |
                          2 send_task  |
                                       |
                                       v
                                +------+--------+
                                | Celery myTest |
                                |               |
                                +------+--------+
                                       |
                  3 send_task_message  |
                                       |
                                       v
                               +-------+---------+
                               |      amqp       |
                               +-------+---------+
                                       |
                            4 publish  |
                                       |
                                       v
                                  +----+------+
                                  | producer  |
                                  |           |
                                  +----+------+
                                       |
                                       |
                      5 basic_publish  |
                                       v
                                  +----+------+
                                  |  channel  |
                                  |           |
                                  +-----------+

4.6 Redis Client

Celery 最后是调用到 Redis Client 完成发送,堆栈如下:

_put, redis.py:793
basic_publish, base.py:605
_publish, messaging.py:200
_ensured, connection.py:525
publish, messaging.py:178
send_task_message, amqp.py:532
send_task, base.py:749
apply_async, task.py:565
<module>, myclient.py:4

具体代码对于:

def lpush(self, name, *values):
    "Push ``values`` onto the head of the list ``name``"
    return self.execute_command('LPUSH', name, *values)
  
# COMMAND EXECUTION AND PROTOCOL PARSING
def execute_command(self, *args, **options):
    "Execute a command and return a parsed response"
    pool = self.connection_pool
    command_name = args[0]
    conn = self.connection or pool.get_connection(command_name, **options)
    try:
        conn.send_command(*args)
        return self.parse_response(conn, command_name, **options)
    except (ConnectionError, TimeoutError) as e:
        conn.disconnect()
        if not (conn.retry_on_timeout and isinstance(e, TimeoutError)):
            raise
        conn.send_command(*args)
        return self.parse_response(conn, command_name, **options)
    finally:
        if not self.connection:
            pool.release(conn)

变量如下:

args = {
     tuple: 3} ('LPUSH', 'celery', '{"body": "W1syLCAxN10sIHt9LCB7ImNhbGxiYWNrcyI6IG51bGwsICJlcnJiYWNrcyI6IG51bGwsICJjaGFpbiI6IG51bGwsICJjaG9yZCI6IG51bGx9XQ==", "content-encoding": "utf-8", "content-type": "application/json", "headers": {"lang": "py", "task": "myTest.add", "id": "59bc4efc-df32-49cc-86ca-fcee613369f9", "shadow": null, "eta": null, "expires": null, "group": null, "group_index": null, "retries": 0, "timelimit": [null, null], "root_id": "59bc4efc-df32-49cc-86ca-fcee613369f9", "parent_id": null, "argsrepr": "(2, 17)", "kwargsrepr": "{}", "origin": "gen18117@me2koreademini"}, "properties": {"correlation_id": "59bc4efc-df32-49cc-86ca-fcee613369f9", "reply_to": "d8e56fd1-ef27-3181-bc29-b9fb63f4dbb7", "delivery_mode": 2, "delivery_info": {"exchange": "", "routing_key": "celery"}, "priority": 0, "body_encoding": "base64", "delivery_tag": "7ff8c477-8ee7-4e71-9e88-e0c4ffc32943"}}')

options = {
     dict: 0} {
     }

self = {
     Redis} Redis<ConnectionPool<Connection<host=localhost,port=6379,db=0>>>

至此一个任务就发送出去,等待着消费者消费掉任务。

一个最终流程图如下:

                apply_async              send_task              create_task_message
 +-----------+                +------+              +---------+                     +------+
 | user func +--------------> | task | +----------->+  Celery | +-----------------> | amqp |
 +-----------+                +------+              +---------+                     +--+---+
                                                                                       |
                                                                    send_task_message  |
                                                                                       |
                                                                                       v
                                    lpush           +---------+                 +------+---+
                                 +----------------+ | Channel |  <------------+ | Producer |
                                 |                  +---------+                 +----------+
                                 |                               basic_publish
                                 |
+------------------------------------------------------------------------------------------+
                                 |
                                 |                                              Redis Client
                                 v
 +-------------------------------+----------------------------------+
 |                                                                  |
 | Redis<ConnectionPool<Connection<host=localhost,port=6379,db=0<>> |
 |                                                                  |
 +-------------------------------+----------------------------------+
                                 |
                                 |  send_command
                                 |
                                 v
         +-----------------------+---------------------------+
         |  Redis Connection<host=localhost,port=6379,db=0>  |
         +---------------------------------------------------+

4.7 redis 内容

发送之后,task 就被存储在redis的队列之中。在redis 的结果是:

127.0.0.1:6379> keys *
1) "_kombu.binding.reply.testMailbox.pidbox"
2) "_kombu.binding.testMailbox.pidbox"
3) "celery"
4) "_kombu.binding.celeryev"
5) "_kombu.binding.celery"
6) "_kombu.binding.reply.celery.pidbox"
127.0.0.1:6379> lrange celery 0 -1
1) "{\"body\": \"W1syLCA4XSwge30sIHsiY2FsbGJhY2tzIjogbnVsbCwgImVycmJhY2tzIjogbnVsbCwgImNoYWluIjogbnVsbCwgImNob3JkIjogbnVsbH1d\", \"content-encoding\": \"utf-8\", \"content-type\": \"application/json\", \"headers\": {\"lang\": \"py\", \"task\": \"myTest.add\", \"id\": \"243aac4a-361b-4408-9e0c-856e2655b7b5\", \"shadow\": null, \"eta\": null, \"expires\": null, \"group\": null, \"group_index\": null, \"retries\": 0, \"timelimit\": [null, null], \"root_id\": \"243aac4a-361b-4408-9e0c-856e2655b7b5\", \"parent_id\": null, \"argsrepr\": \"(2, 8)\", \"kwargsrepr\": \"{}\", \"origin\": \"gen33652@DESKTOP-0GO3RPO\"}, \"properties\": {\"correlation_id\": \"243aac4a-361b-4408-9e0c-856e2655b7b5\", \"reply_to\": \"b34fcf3d-da9a-3717-a76f-44b6a6362da1\", \"delivery_mode\": 2, \"delivery_info\": {\"exchange\": \"\", \"routing_key\": \"celery\"}, \"priority\": 0, \"body_encoding\": \"base64\", \"delivery_tag\": \"fa1bc9c8-3709-4c02-9543-8d0fe3cf4e6c\"}}"

4.7.1 delivery_tag 作用

可以看到,最终消息中,有一个 delivery_tag 变量,这里要特殊说明下。

可以认为 delivery_tag 是消息在 redis 之中的唯一标示,是 UUID 格式。

具体举例如下:

"delivery_tag": "fa1bc9c8-3709-4c02-9543-8d0fe3cf4e6c"

后续 QoS 就使用 delivery_tag 来做各种处理,比如 ack, snack。

with self.pipe_or_acquire() as pipe:
    pipe.zadd(self.unacked_index_key, *zadd_args) \
        .hset(self.unacked_key, delivery_tag,
              dumps([message._raw, EX, RK])) \
        .execute()
    super().append(message, delivery_tag)

4.7.2 delivery_tag 何时生成

我们关心的是在发送消息时候,何时生成 delivery_tag。

结果发现是在 Channel 的 _next_delivery_tag 函数中,是在发送消息之前,对消息做了进一步增强。

def _next_delivery_tag(self):
    return uuid()

具体堆栈如下:

_next_delivery_tag, base.py:595
_inplace_augment_message, base.py:614
basic_publish, base.py:599
_publish, messaging.py:200
_ensured, connection.py:525
publish, messaging.py:178
send_task_message, amqp.py:532
send_task, base.py:749
apply_async, task.py:565
<module>, myclient.py:4

至此,客户端发送 task 的流程已经结束,有兴趣的可以看看 [源码解析] 并行分布式任务队列 Celery 之 消费动态流程 此章从服务端角度讲解收到 Task 如何消费。

0xFF 参考

celery源码分析-Task的初始化与发送任务

Celery 源码解析三: Task 对象的实现

分布式任务队列 Celery —— 详解工作流

★★★★★★关于生活和技术的思考★★★★★★

微信公众账号:罗西的思考

如果您想及时得到个人撰写文章的消息推送,或者想看看个人推荐的技术资料,可以扫描下面二维码(或者长按识别二维码)关注个人公众号)。

在这里插入图片描述

你可能感兴趣的:(008_分布式,016_消息队列,Python,Celery,Kombu,任务队列)