杭州某商务楼里,正发生着一起求职者和面试官的battle。
面试官:你先自我介绍一下。
安琪拉:面试官你好,我是草丛三婊,最强中单(妲己不服),草地摩托车车手,第21套广播体操推广者,火的传人安琪拉,这是我的简历,请过目。
面试官:看你简历上写熟悉多线程编程,熟悉到什么程度?
安琪拉:精通。
对。。。,你没看错,问就是“精通”,把666打在评论区。
面试官:
[心想] 莫不是个憨批,上来就说自己精通,谁把精通挂嘴上,莫不是个愣头青嘞!
面试官:那我们开始吧。用过Threadlocal 吧?
安琪拉:用过。
面试官:那你跟我讲讲 ThreadLocal 在你们项目中的用法吧。
安琪拉:我们项目属于保密项目,无可奉告,你还是换个问题吧!
面试官:那说个不保密的项目,或者你直接告诉我Threadlocal 的实现原理吧。
安琪拉:show time。。。
安琪拉:举个栗子,我们支付宝每秒钟同时会有很多用户请求,那每个请求都带有用户信息,我们知道通常都是一个线程处理一个用户请求,我们可以把用户信息丢到Threadlocal里面,让每个线程处理自己的用户信息,线程之间互不干扰。
面试官:等等,问你个私人问题,为什么从支付宝跑出来面试,受不了PUA了吗?
安琪拉:PUA我,不存在的,能PUA我的人还没出生呢!公司食堂吃腻了,想换换口味。
面试官:那你来给我讲讲Threadlocal
是干什么的?
安琪拉:Threadlocal 主要用来做线程变量的隔离,这么说可能不是很直观。
还是说前面提到的例子,我们程序在处理用户请求的时候,通常后端服务器是有一个线程池,来一个请求就交给一个线程来处理,那为了防止多线程并发处理请求的时候发生串数据,比如AB线程分别处理安琪拉和妲己的请求,A线程本来处理安琪拉的请求,结果访问到妲己的数据上了,把妲己支付宝的钱转走了。
所以就可以把安琪拉的数据跟A线程绑定,线程处理完之后解除绑定。
面试官:那把你刚才说的场景用伪代码实现一下,来笔给你!
安琪拉:ok
//存放用户信息的ThreadLocal
private static final ThreadLocal userInfoThreadLocal = new ThreadLocal<>();
public Response handleRequest(UserInfo userInfo) {
Response response = new Response();
try {
// 1.用户信息set到线程局部变量中
userInfoThreadLocal.set(userInfo);
doHandle();
} finally {
// 3.使用完移除掉
userInfoThreadLocal.remove();
}
return response;
}
//业务逻辑处理
private void doHandle () {
// 2.实际用的时候取出来
UserInfo userInfo = userInfoThreadLocal.get();
//查询用户资产
queryUserAsset(userInfo);
}
1.2.3 步骤很清楚了。
面试官:那你跟我说说Threadlocal
怎么实现线程变量的隔离的?
安琪拉:Oh, 这么快进入正题,我先给你画个图,如下
面试官:图我看了,那你对着前面你写的代码讲一下对应图中流程。
安琪拉:没问题
首先我们通过ThreadLocal
初始化了一个Threadlocal 对象,就是上图中说的Threadlocal 引用,这个引用指向堆中的ThreadLocal 对象;
然后我们调用userInfoThreadLocal.set(userInfo);
这里做了什么事呢?
我们把源代码拿出来,看一看就清晰了。
我们知道 Thread 类有个 ThreadLocalMap 成员变量,这个Map key是Threadlocal 对象,value是你要存放的线程局部变量。
# Threadlocal类 Threadlocal.class
public void set(T value) {
//获取当前线程Thread,就是上图画的Thread 引用
Thread t = Thread.currentThread();
//Thread类有个成员变量ThreadlocalMap,拿到这个Map
ThreadLocalMap map = getMap(t);
if (map != null)
//this指的就是Threadlocal对象
map.set(this, value);
else
createMap(t, value);
}
ThreadLocalMap getMap(Thread t) {
//获取线程的ThreadLocalMap
return t.threadLocals;
}
void createMap(Thread t, T firstValue) {
//初始化
t.threadLocals = new ThreadLocalMap(this, firstValue);
}
# Thread类 Thread.class
public class Thread implements Runnable {
//每个线程都有自己的ThreadLocalMap 成员变量
ThreadLocal.ThreadLocalMap threadLocals = null;
}
这里是在当前线程对象的ThreadlocalMap中put了一个元素(Entry),key是Threadlocal对象,value是userInfo。
理解二件事就都清楚了:
ThreadLocalMap 类的定义在 Threadlocal中。
第一,Thread 对象是Java语言中线程运行的载体,每个线程都有对应的Thread 对象,存放线程相关的一些信息,
第二,Thread类中有个成员变量ThreadlocalMap,你就把他当成普通的Map,key存放的是Threadlocal对象,value是你要跟线程绑定的值(线程隔离的变量),比如这里是用户信息对象(UserInfo)。
面试官:你刚才说Thread 类有个 ThreadlocalMap 属性的成员变量,但是ThreadlocalMap 的定义却在Threadlocal 中,为什么这么做?
安琪拉:我们看下ThreadlocalMap的说明
class ThreadLocalMap * ThreadLocalMap is a customized hash map suitable only for * maintaining thread local values. No operations are exported * outside of the ThreadLocal class. The class is package private to * allow declaration of fields in class Thread. To help deal with * very large and long-lived usages, the hash table entries use * WeakReferences for keys. However, since reference queues are not * used, stale entries are guaranteed to be removed only when * the table starts running out of space.
大概意思是ThreadLocalMap 就是为维护线程本地变量而设计的,只做这一件事情。
这个也是为什么 ThreadLocalMap 是Thread的成员变量,但是却是Threadlocal 的内部类(非public,只有包访问权限,Thread和Threadlocal都在java.lang 包下),就是让使用者知道ThreadLocalMap就只做保存线程局部变量这一件事的。
面试官:既然是线程局部变量,那为什么不用线程对象(Thread对象)作为key,这样不是更清晰,直接用线程作为key获取线程变量?
安琪拉:这样设计会有个问题,比如: 我已经把用户信息存在线程变量里了,这个时候需要新增加一个线程变量,比方说新增用户地理位置信息,我们ThreadlocalMap 的key用的是线程,再存一个地理位置信息,key都是同一个线程(key一样),不就把原来的用户信息覆盖了嘛。Map.put(key,value) 操作熟悉吧,所以网上有些文章说ThreadlocalMap使用线程作为key是瞎扯的。
面试官:那新增地理位置信息应该怎么做?
安琪拉:新创建一个Threadlocal对象就好了,因为ThreadLocalMap的key是Threadlocal 对象,比如新增地理位置,我就再 Threadlocal < Geo> geo = new Threadlocal(), 存放地理位置信息,这样线程的ThreadlocalMap里面会有二个元素,一个是用户信息,一个是地理位置。
面试官:ThreadlocalMap 是什么数据结构实现的?
安琪拉:跟HashMap 一样,也是数组实现的。
代码如下:
class ThreadLocalMap {
//初始容量
private static final int INITIAL_CAPACITY = 16;
//存放元素的数组
private Entry[] table;
//元素个数
private int size = 0;
}
table 就是存储线程局部变量的数组,数组元素是Entry类,Entry由key和value组成,key是Threadlocal对象,value是存放的对应线程变量
我们前面举得例子,数组存储结构如下图:
面试官:ThreadlocalMap 发生hash冲突怎么办?跟HashMap 有什么区别?
安琪拉:【心想】第一次碰到有问ThreadlocalMap哈希冲突的,这个面试越来越有意思了。
说道:有区别的,对待哈希冲突,HashMap采用的链表 + 红黑树的形式,如下图,链表长度过长(>8) 就会转成红黑树:
HashMap详解:
一个HashMap跟面试官扯了半个小时
ThreadlocalMap既没有链表,也没有红黑树,采用的是开放定址法 ,是这样,是如果发生冲突,ThreadlocalMap直接往后找相邻的下一个节点,如果相邻节点为空,直接存进去,如果不为空,继续往后找,直到找到空的,把元素放进去,或者元素个数超过数组长度阈值,进行扩容。
如下图:还是以之前的例子讲解,ThreadlocalMap 数组长度是4,现在存地理位置的时候发生hash冲突(位置1已经有数据),那就把往后找,发现2 这个位置为空,就直接存放在2这个位置。
源代码(如果阅读起来困难,可以看完后文回过头来阅读):
private void set(ThreadLocal> key, Object value) {
Entry[] tab = table;
int len = tab.length;
// hashcode & 操作其实就是 %数组长度取余数,例如:数组长度是4,hashCode % (4-1) 就找到要存放元素的数组下标
int i = key.threadLocalHashCode & (len-1);
//找到数组的空槽(=null),一般ThreadlocalMap存放元素不会很多
for (Entry e = tab[i];
e != null; //找到数组的空槽(=null)
e = tab[i = nextIndex(i, len)]) {
ThreadLocal> k = e.get();
//如果key值一样,算是更新操作,直接替换
if (k == key) {
e.value = value;
return;
}
//key为空,做替换清理动作,这个后面聊WeakReference的时候讲
if (k == null) {
replaceStaleEntry(key, value, i);
return;
}
}
//新new一个Entry
tab[i] = new Entry(key, value);
//数组元素个数+1
int sz = ++size;
//如果没清理掉元素或者存放元素个数超过数组阈值,进行扩容
if (!cleanSomeSlots(i, sz) && sz >= threshold)
rehash();
}
//顺序遍历 +1 到了数组尾部,又回到数组头部(0这个位置)
private static int nextIndex(int i, int len) {
return ((i + 1 < len) ? i + 1 : 0);
}
// get()方法,根据ThreadLocal key获取线程变量
private Entry getEntry(ThreadLocal> key) {
//计算hash值 & 操作其实就是 %数组长度取余数,例如:数组长度是4,hashCode % (4-1) 就找到要查询的数组地址
int i = key.threadLocalHashCode & (table.length - 1);
Entry e = table[i];
//快速判断 如果这个位置有值,key相等表示找到了,直接返回
if (e != null && e.get() == key)
return e;
else
return getEntryAfterMiss(key, i, e); //miss之后顺序往后找(链地址法,这个后面再介绍)
}
面试官:我看你最前面图中画的ThreadlocalMap 中key是 WeakReference类型,能讲讲Java中有几种类似的引用,什么区别吗?
安琪拉:可以
强引用是使用最普遍的引用。如果一个对象具有强引用,那垃圾回收器绝不会回收它,当内存空间不足时,Java
虚拟机宁愿抛出OutOfMemoryError
错误,使程序异常终止,也不会靠随意回收具有强引用的对象来解决内存不足的问题。
如果一个对象只具有软引用,则内存空间充足时,垃圾回收器就不会回收它;如果内存空间不足了,就会回收这些对象的内存。
弱引用与软引用的区别在于:只具有弱引用的对象拥有更短暂的生命周期。在垃圾回收器线程扫描内存区域时,一旦发现了只具有弱引用的对象,不管当前内存空间足够与否,都会回收它的内存。不过,由于垃圾回收器是一个优先级很低的线程,因此不一定会很快发现那些只具有弱引用的对象。
虚引用顾名思义,就是形同虚设。与其他几种引用都不同,虚引用并不会决定对象的生命周期。如果一个对象仅持有虚引用,那么它就和没有任何引用一样,在任何时候都可能被垃圾回收器回收。
妥妥的八股文啊!尴尬(─.─|||。
面试官:那你能讲讲为什么ThreadlocalMap 中key 设计成 WeakReference(弱引用)类型吗?
安琪拉:可以的,为了尽最大努力避免内存泄漏。
面试官:能详细讲讲吗?为什么是尽最大努力,你前面也讲被WeakReference 引用的对象会直接被GC(内存回收器) 回收,为什么不是直接避免了内存泄漏呢?
安琪拉:我们还是看下下面这张图
private static final ThreadLocal userInfoThreadLocal = new ThreadLocal<>();
userInfoThreadLocal.set(userInfo);
这里的引用关系是userInfoThreadLocal 引用了ThreadLocal对象,这是个强引用,ThreadLocal对象同时也被ThreadlocalMap的key引用,这是个WeakReference引用,我们前面说GC要回收ThreadLocal对象的前提是它只被WeakReference引用,没有任何强引用。
为了方便大家理解弱引用,我写了段Demo程序
public static void main(String[] args) {
Object angela = new Object();
//弱引用
WeakReference
可以看到一旦一个对象只被弱引用引用,GC的时候就会回收这个对象。
所以只要ThreadLocal对象如果还被 userInfoThreadLocal(强引用) 引用着,GC是不会回收被WeakReference引用的对象的。
面试官:那既然ThreadLocal对象有强引用,回收不掉,干嘛还要设计成WeakReference类型呢?
安琪拉:ThreadLocal的设计者考虑到线程往往生命周期很长,比如经常会用到线程池,线程一直存活着,根据JVM 根搜索算法,一直存在 Thread -> ThreadLocalMap -> Entry(元素)这样一条引用链路, 如下图,如果key不设计成WeakReference类型,是强引用的话,就一直不会被GC回收,key就一直不会是null,不为null Entry元素就不会被清理(ThreadLocalMap是根据key是否为null来判断是否清理Entry)
所以ThreadLocal的设计者认为只要ThreadLocal 所在的作用域结束了工作被清理了,GC回收的时候就会把key引用对象回收,key置为null,ThreadLocal会尽力保证Entry清理掉来最大可能避免内存泄漏。
来看下代码
//元素类
static class Entry extends WeakReference> {
/** The value associated with this ThreadLocal. */
Object value; //key是从父类继承的,所以这里只有value
Entry(ThreadLocal> k, Object v) {
super(k);
value = v;
}
}
//WeakReference 继承了Reference,key是继承了范型的referent
public abstract class Reference {
//这个就是被继承的key
private T referent;
Reference(T referent) {
this(referent, null);
}
}
Entry 继承了WeakReference类,Entry 中的 key 是WeakReference类型的,在Java 中当对象只被 WeakReference 引用,没有其他对象引用时,被WeakReference 引用的对象发生GC 时会直接被回收掉。
面试官:那如果Threadlocal 对象一直有强引用,那怎么办?岂不是有内存泄漏风险。
安琪拉:最佳实践是用完手动调用remove函数。
我们看下源码:
class Threadlocal {
public void remove() {
//这个是拿到线程的ThreadLocalMap
ThreadLocalMap m = getMap(Thread.currentThread());
if (m != null)
m.remove(this); //this就是ThreadLocal对象,移除,方法在下面
}
}
class ThreadlocalMap {
private void remove(ThreadLocal> key) {
Entry[] tab = table;
int len = tab.length;
//计算位置
int i = key.threadLocalHashCode & (len-1);
for (Entry e = tab[i];
e != null;
e = tab[i = nextIndex(i, len)]) {
//清理
if (e.get() == key) {
e.clear();
expungeStaleEntry(i); //清理空槽
return;
}
}
}
}
//这个方法就是做元素清理
private int expungeStaleEntry(int staleSlot) {
Entry[] tab = table;
int len = tab.length;
//把staleSlot的value置为空,然后数组元素置为空
tab[staleSlot].value = null;
tab[staleSlot] = null;
size--; //元素个数-1
// Rehash until we encounter null
Entry e;
int i;
for (i = nextIndex(staleSlot, len);
(e = tab[i]) != null;
i = nextIndex(i, len)) {
ThreadLocal> k = e.get();
//k 为null代表引用对象被GC回收掉了
if (k == null) {
e.value = null;
tab[i] = null;
size--;
} else {
//因为元素个数减少了,就把后面的元素重新hash
int h = k.threadLocalHashCode & (len - 1);
//hash地址不相等,就代表这个元素之前发生过hash冲突(本来应该放在这没放在这),
//现在因为有元素被移除了,很有可能原来冲突的位置空出来了,重试一次
if (h != i) {
tab[i] = null;
//继续采用链地址法存放元素
while (tab[h] != null)
h = nextIndex(h, len);
tab[h] = e;
}
}
}
return i;
}
面试官:你有没有用Threadlocal的工程实际经历,给我讲讲。
安琪拉:有啊!
之前我跟你们一面面试官聊过,我是怎么把支付宝后台负责的系统四十几个核心rpc接口性能大幅度提升的,下面这个就是其中一个接口切流之后的效果,其中就用到了Threadlocal
。
面试官:嗯,说说。
安琪拉:我刚才说有四十多个接口要做技改优化,那风险是很高的,我需要保证接口切换后业务不受影响,也叫等效切换。
流程是这样的:
把这四十多个接口按照业务含义定义了接口常量名称,比如接口名alipay.quickquick.follow.angela
;
按照接口的流量从低到高开始切流,提前配置中心配置好每个接口的切流比例和用户白名单;
切流也有讲究,先按照userId白名单切,再按照userId尾号切百分比,完全没问题再完整切;
在顶层抽象模版方法的入口通过ThreadLocal Set 接口名,把接口名塞进去;
然后我在切流的地方通过ThreadLocal 获取接口名,用于接口切流判断切流;
面试官:最后一个问题,如果我有很多变量都要塞到ThreadlocalMap中,那岂不是要申明很多个Threadlocal 对象?有没有好的解决办法。
安琪拉:我们的最佳实践是搞个再封装一下,把ThreadLocalMap 的value 弄成Map就好了,这样只要一个Threadlocal 对象就好了。
面试官:能详细讲讲吗?
安琪拉:讲不动了,太累了。
面试官:讲讲。
安琪拉:真不想讲了。
面试官:那今天先到这,您出了这个门右拐,回去等通知吧!