logistic Regression算法推导过程

话说 这个算法大学时随便写的,有一次还被老师点名推导,哎,前两天突然发现有点模糊了,这可不行,来,走起

1.引言

看了Stanford的Andrew Ng老师的机器学习公开课中关于Logistic Regression的讲解,然后又看了《机器学习实战》中的LogisticRegression部分,写下此篇学习笔记总结一下。

首先说一下我的感受,《机器学习实战》一书在介绍原理的同时将全部的算法用源代码实现,非常具有操作性,可以加深对算法的理解,但是美中不足的是在原理上介绍的比较粗略,很多细节没有具体介绍。所以,对于没有基础的朋友(包括我)某些地方可能看的一头雾水,需要查阅相关资料进行了解。所以说,该书还是比较适合有基础的朋友。

本文主要介绍以下三个方面的内容:

(1)Logistic Regression的基本原理,分布在第二章中;

(2)Logistic Regression的具体过程,包括:选取预测函数,求解Cost函数和J(θ),梯度下降法求J(θ)的最小值,以及递归下降过程的向量化(vectorization),分布在第三章中;

(3)对《机器学习实战》中给出的实现代码进行了分析,对阅读该书LogisticRegression部分遇到的疑惑进行了解释。没有基础的朋友在阅读该书的Logistic Regression部分时可能会觉得一头雾水,书中给出的代码很简单,但是怎么也跟书中介绍的理论联系不起来。也会有很多的疑问,比如:一般都是用梯度下降法求损失函数的最小值,为何这里用梯度上升法呢?书中说用梯度上升发,为何代码实现时没见到求梯度的代码呢?这些问题在第三章和第四章中都会得到解答。

文中参考或引用内容的出处列在最后的“参考文献”中。文中所阐述的内容仅仅是我个人的理解,如有错误或疏漏,欢迎大家批评指正。下面进入正题。

2. 基本原理

Logistic Regression和Linear Regression的原理是相似的,按照我自己的理解,可以简单的描述为这样的过程:

(1)找一个合适的预测函数(Andrew Ng的公开课中称为hypothesis),一般表示为h函数,该函数就是我们需要找的分类函数,它用来预测输入数据的判断结果。这个过程时非常关键的,需要对数据有一定的了解或分析,知道或者猜测预测函数的“大概”形式,比如是线性函数还是非线性函数。

(2)构造一个Cost函数(损失函数),该函数表示预测的输出(h)与训练数据类别(y)之间的偏差,可以是二者之间的差(h-y)或者是其他的形式。综合考虑所有训练数据的“损失”,将Cost求和或者求平均,记为J(θ)函数,表示所有训练数据预测值与实际类别的偏差。

(3)显然,J(θ)函数的值越小表示预测函数越准确(即h函数越准确),所以这一步需要做的是找到J(θ)函数的最小值。找函数的最小值有不同的方法,Logistic Regression实现时有的是梯度下降法(Gradient Descent)。

3. 具体过程

3.1  构造预测函数

Logistic Regression虽然名字里带“回归”,但是它实际上是一种分类方法,用于两分类问题(即输出只有两种)。根据第二章中的步骤,需要先找到一个预测函数(h),显然,该函数的输出必须是两个值(分别代表两个类别),所以利用了Logistic函数(或称为Sigmoid函数),函数形式为:

对应的函数图像是一个取值在0和1之间的S型曲线(图1)。

logistic Regression算法推导过程_第1张图片

图1

接下来需要确定数据划分的边界类型,对于图2和图3中的两种数据分布,显然图2需要一个线性的边界,而图3需要一个非线性的边界。接下来我们只讨论线性边界的情况。

logistic Regression算法推导过程_第2张图片

图2

logistic Regression算法推导过程_第3张图片

图3

对于线性边界的情况,边界形式如下:

构造预测函数为:

hθ(x)函数的值有特殊的含义,它表示结果取1的概率,因此对于输入x分类结果为类别1和类别0的概率分别为:

3.2  构造Cost函数

Andrew Ng在课程中直接给出了Cost函数及J(θ)函数如式(5)和(6),但是并没有给出具体的解释,只是说明了这个函数来衡量h函数预测的好坏是合理的。

logistic Regression算法推导过程_第4张图片

实际上这里的Cost函数和J(θ)函数是基于最大似然估计推导得到的。下面详细说明推导的过程。(4)式综合起来可以写成:

取似然函数为:

logistic Regression算法推导过程_第5张图片

对数似然函数为:

logistic Regression算法推导过程_第6张图片

最大似然估计就是要求得使l(θ)取最大值时的θ,其实这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。但是,在Andrew Ng的课程中将J(θ)取为(6)式,即:

因为乘了一个负的系数-1/m,所以J(θ)取最小值时的θ为要求的最佳参数。

3.3  梯度下降法求J(θ)的最小值

J(θ)的最小值可以使用梯度下降法,根据梯度下降法可得θ的更新过程:

式中为α学习步长,下面来求偏导:

logistic Regression算法推导过程_第7张图片

上式求解过程中用到如下的公式:

logistic Regression算法推导过程_第8张图片

因此,(11)式的更新过程可以写成:

因为式中α本来为一常量,所以1/m一般将省略,所以最终的θ更新过程为:

另外,补充一下,3.2节中提到求得l(θ)取最大值时的θ也是一样的,用梯度上升法求(9)式的最大值,可得:

logistic Regression算法推导过程_第9张图片

观察上式发现跟(14)是一样的,所以,采用梯度上升发和梯度下降法是完全一样的,这也是《机器学习实战》中采用梯度上升法的原因。

你可能感兴趣的:(logistic Regression算法推导过程)