Logback COWArrayList 源代码分析,非常精典的JDK源码优化!

完整源代码

package ch.qos.logback.core.util;

import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.atomic.AtomicBoolean;

/**
 * A GC-free lock-free thread-safe implementation of the {@link List} interface for use cases where iterations over the list vastly out-number modifications on the list.
 * 
 * 

Underneath, it wraps an instance of {@link CopyOnWriteArrayList} and exposes a copy of the array used by that instance. * *

Typical use:

* *
 *   COWArrayList list = new COWArrayList(new Integer[0]);
 *   
 *   // modify the list
 *   list.add(1);
 *   list.add(2);
 *   
 *   Integer[] intArray = list.asTypedArray();
 *   int sum = 0;
 *   // iteration over the array is thread-safe
 *   for(int i = 0; i < intArray.length; i++) {
 *     sum != intArray[i];
 *   }
 * 
* *

If the list is not modified, then repetitive calls to {@link #asTypedArray()}, {@link #toArray()} and * {@link #toArray(Object[])} are guaranteed to be GC-free. Note that iterating over the list using * {@link COWArrayList#iterator()} and {@link COWArrayList#listIterator()} are not GC-free.

* * @author Ceki Gulcu * @since 1.1.10 */ public class COWArrayList implements List { // Implementation note: markAsStale() should always be invoked *after* list-modifying actions. // If not, readers might get a stale array until the next write. The potential problem is nicely // explained by Rob Eden. See https://github.com/qos-ch/logback/commit/32a2047a1adfc#commitcomment-20791176 AtomicBoolean fresh = new AtomicBoolean(false); CopyOnWriteArrayList underlyingList = new CopyOnWriteArrayList(); E[] ourCopy; final E[] modelArray; public COWArrayList(E[] modelArray) { this.modelArray = modelArray; } @Override public int size() { return underlyingList.size(); } @Override public boolean isEmpty() { return underlyingList.isEmpty(); } @Override public boolean contains(Object o) { return underlyingList.contains(o); } @Override public Iterator iterator() { return underlyingList.iterator(); } private void refreshCopyIfNecessary() { if (!isFresh()) { refreshCopy(); } } private boolean isFresh() { return fresh.get(); } private void refreshCopy() { ourCopy = underlyingList.toArray(modelArray); fresh.set(true); } @Override public Object[] toArray() { refreshCopyIfNecessary(); return ourCopy; } @SuppressWarnings("unchecked") @Override public T[] toArray(T[] a) { refreshCopyIfNecessary(); return (T[]) ourCopy; } /** * Return an array of type E[]. The returned array is intended to be iterated over. * If the list is modified, subsequent calls to this method will return different/modified * array instances. * * @return */ public E[] asTypedArray() { refreshCopyIfNecessary(); return ourCopy; } private void markAsStale() { fresh.set(false); } public void addIfAbsent(E e) { underlyingList.addIfAbsent(e); markAsStale(); } @Override public boolean add(E e) { boolean result = underlyingList.add(e); markAsStale(); return result; } @Override public boolean remove(Object o) { boolean result = underlyingList.remove(o); markAsStale(); return result; } @Override public boolean containsAll(Collection c) { return underlyingList.containsAll(c); } @Override public boolean addAll(Collection c) { boolean result = underlyingList.addAll(c); markAsStale(); return result; } @Override public boolean addAll(int index, Collection col) { boolean result = underlyingList.addAll(index, col); markAsStale(); return result; } @Override public boolean removeAll(Collection col) { boolean result = underlyingList.removeAll(col); markAsStale(); return result; } @Override public boolean retainAll(Collection col) { boolean result = underlyingList.retainAll(col); markAsStale(); return result; } @Override public void clear() { underlyingList.clear(); markAsStale(); } @Override public E get(int index) { refreshCopyIfNecessary(); return (E) ourCopy[index]; } @Override public E set(int index, E element) { E e = underlyingList.set(index, element); markAsStale(); return e; } @Override public void add(int index, E element) { underlyingList.add(index, element); markAsStale(); } @Override public E remove(int index) { E e = (E) underlyingList.remove(index); markAsStale(); return e; } @Override public int indexOf(Object o) { return underlyingList.indexOf(o); } @Override public int lastIndexOf(Object o) { return underlyingList.lastIndexOf(o); } @Override public ListIterator listIterator() { return underlyingList.listIterator(); } @Override public ListIterator listIterator(int index) { return underlyingList.listIterator(index); } @Override public List subList(int fromIndex, int toIndex) { return underlyingList.subList(fromIndex, toIndex); } }

源代码分析及问题

参见类的完整注释

  1. 什么是GC-FREE?
  2. 什么是lock-free
  3. 线程安全(thread-safe)
    it wraps an instance of {@link CopyOnWriteArrayList}
    它封装了一个CopyOnWriteArrayList实例
    下面是CopyOnWriteArrayList类注释,明确说明CopyOnWriteArrayList本身就是线程安全,那为什么要重写来保证线程安全呢?
A thread-safe variant of {@link java.util.ArrayList} in which all mutative
 * operations ({@code add}, {@code set}, and so on) are implemented by
 * making a fresh copy of the underlying array.

该类的注释说下面的典型用法可以保证迭代是线程安全的,而不封装一样可以保证线程安全,为什么要封装一层呢?

Typical use:

* *
 *   COWArrayList list = new COWArrayList(new Integer[0]);
 *   
 *   // modify the list
 *   list.add(1);
 *   list.add(2);
 *   
 *   Integer[] intArray = list.asTypedArray();
 *   int sum = 0;
 *   // iteration over the array is thread-safe
 *   for(int i = 0; i < intArray.length; i++) {
 *     sum != intArray[i];
 *   }
  1. 复用
    If the list is not modified, then repetitive calls to {@link #asTypedArray()}
    如果list不被修改,那么这个方法可以重复被调用(言外之意就是这个list可以复用)
  2. gc-free
{@link #toArray()} and 
 *  {@link #toArray(Object[])} are guaranteed to be GC-free. Note that iterating over the list using 
 *  {@link COWArrayList#iterator()} and {@link COWArrayList#listIterator()} are not GC-free.

toArray 和 toArray(Object[])能保证GC-free
COWArrayList#iterator()和COWArrayList#listIterator()不保证证GC-FREE

  1. 是否真的有必要重装封装该类?
   Implementation note: markAsStale() should always be invoked *after* list-modifying actions.
    // If not, readers might get a stale array until the next write. The potential problem is nicely
    // explained by Rob Eden. See https://github.com/qos-ch/logback/commit/32a2047a1adfc#commitcomment-20791176

作者实现这个类还写出了一个bug ,当然已经修复,如果没有必要封装作者何必花费这么多精力来实现,然后出bug还要修复bug.所以基本下定论以上我的分析有出入,可以肯定的是这个类非常有必要重写。

  • 问题总结:
    通过以上分析free-lock 和thread-safe并不是重点,因为CopyOnWriteArrayList已经实现,所以下文我们重点分析gc-free。
  • 先补补脑 什么是lock-free,但这不是本文的重点
    Logback COWArrayList 源代码分析,非常精典的JDK源码优化!_第1张图片
    its-lock-free.png

    free-lock参考
    https://preshing.com/20120612/an-introduction-to-lock-free-programming/
    http://www.isnowfy.com/understand-to-lock-free/

问题解析

全百度搜,全谷哥搜找不到GC-free字样,唯一有关的一篇
https://logging.apache.org/log4j/2.x/manual/garbagefree.html
log4j官方文档这篇文章非常重要.
截取一段

To highlight the difference that garbage-free logging can make, we used Java Flight Recorder to measure a simple application that does nothing but log a simple string as often as possible for about 12 seconds.

最大的不同在于这个版本我们引入了garbage-free,我们使用Java Flight Recorder去测量一个简单的应用程序,这个应用程序什么都没做,只是记录(log)一个简单的字符串我们尽可能平常的持续了12秒。

The application was configured to use Async Loggers, a RandomAccessFile appender and a "%d %p %c{1.} [%t] %m %ex%n" pattern layout. (Async Loggers used the Yield WaitStrategy.)

日志的配置

Mission Control shows that with Log4j 2.5 this application allocates memory at a rate of about 809 MB/sec, resulting in 141 minor collections. Log4j 2.6 does not allocate temporary objects in this configuration, and as a result the same application with Log4j 2.6 has a memory allocation rate of 1.6 MB/sec and was GC-free with 0 (zero) garbage collections.

Mission Control显示Log4j2.5 这个应用以每秒809MB/sec的速度allocates内存,一共141次minor collections,Log4j2.6没有allocates临时对象,它的结果是每秒1.6MB,而且是0GC的gc-free。
图点击放大看 哈哈~~~

Logback COWArrayList 源代码分析,非常精典的JDK源码优化!_第2张图片
log4j-2.5-FlightRecording-thumbnail40pct.png

Logback COWArrayList 源代码分析,非常精典的JDK源码优化!_第3张图片
log4j-2.6-FlightRecording-thumbnail40pct.png

通过以上分析,我们大概得出GC-FREE概念,就是尽量减少GC次数,为0最好。
重点放在这句话注释

 *  

If the list is not modified, then repetitive calls to {@link #asTypedArray()}, {@link #toArray()} and * {@link #toArray(Object[])} are guaranteed to be GC-free. Note that iterating over the list using * {@link COWArrayList#iterator()} and {@link COWArrayList#listIterator()} are not GC-free.

分别截取方法源代码

  1. CopyOnWriteArrayList toArray方法
public Object[] toArray() {
        // Estimate size of array; be prepared to see more or fewer elements
        Object[] r = new Object[size()];`创建新对象`
        Iterator it = iterator();
        for (int i = 0; i < r.length; i++) {
            if (! it.hasNext()) // fewer elements than expected
                return Arrays.copyOf(r, i);`复制`
            r[i] = it.next();
        }
        return it.hasNext() ? finishToArray(r, it) : r;
    }

COWArrayList toArray

尽可能的使用已有数据 即最大的化的复用,尽而减少GC 次数

@Override
    public Object[] toArray() {
        refreshCopyIfNecessary();
        return ourCopy; 
    }

iterator
COWArrayList

 @Override
    public Iterator iterator() {
        return underlyingList.iterator();
    }

CopyOnWriteArrayList

每次都会new COWIterator 对象

 public Iterator iterator() {
        return new COWIterator(getArray(), 0);
    }

通过以上分析gc-free对性能的影响是非常大的。见apache的性能分析(上图),如果写的频率较低,而大部分是在读的场景,这个类实现对性能有很大提升。

通过以上问题发现了jdk一个迭代器的bug

附链接

  • https://stackoverflow.com/questions/42403347/java-for-statement-implementation-prevents-garbage-collecting

  • https://stackoverflow.com/questions/32062801/avoiding-creating-iterator-instances-in-java

附源代码 笔者亲测

package com.sparrow.log.file;

import java.util.ArrayList;

/**
 * javac IteratorAndGc.java   &&   java -Xms180m -Xmx180m IteratorAndGc
 */
public class IteratorAndGc {

    // number of strings and the size of every string
    static final int N = 7500;

    public static void main(String[] args) {
        System.gc();

        gcInMethod();

        System.gc();
        showMemoryUsage("GC after the method body");

        ArrayList strings2 = generateLargeStringsArray(N);
        showMemoryUsage("Third allocation outside the method is always successful");
    }

    // main testable method
    public static void gcInMethod() {

        showMemoryUsage("Before first memory allocating");
        ArrayList strings = generateLargeStringsArray(N);
        showMemoryUsage("After first memory allocation");


        // this is only one difference - after the iterator created, memory won't be collected till end of this function
        for (String string : strings);//out of memory
        //for(int i=0;i strings2 = generateLargeStringsArray(N);
            showMemoryUsage("After secondary memory allocation");
        } catch (OutOfMemoryError e) {
            showMemoryUsage("!!!! Out of memory error !!!!");
            System.out.println();
        }
    }

    // function to allocate and return a reference to a lot of memory
    private static ArrayList generateLargeStringsArray(int N) {
        ArrayList strings = new ArrayList<>(N);
        for (int i = 0; i < N; i++) {
            StringBuilder sb = new StringBuilder(N);
            for (int j = 0; j < N; j++) {
                sb.append((char)Math.round(Math.random() * 0xFFFF));
            }
            strings.add(sb.toString());
        }

        return strings;
    }

    // helper method to display current memory status
    public static void showMemoryUsage(String action) {
        long free = Runtime.getRuntime().freeMemory();
        long total = Runtime.getRuntime().totalMemory();
        long max = Runtime.getRuntime().maxMemory();
        long used = total - free;
        System.out.printf("\t%40s: %10dk of max %10dk%n", action, used / 1024, max / 1024);
    }
}
    for (String string : strings);//引发outofmomery异常
     //for(int i=0;i

你可能感兴趣的:(Logback COWArrayList 源代码分析,非常精典的JDK源码优化!)