- 大型语言模型与强化学习的融合:迈向通用人工智能的新范式——基于基础复现的实验平台构建
(initial)
大模型科普人工智能强化学习
1.引言大型语言模型(LLM)在自然语言处理领域的突破,展现了强大的知识存储、推理和生成能力,为人工智能带来了新的可能性。强化学习(RL)作为一种通过与环境交互学习最优策略的方法,在智能体训练中发挥着重要作用。本文旨在探索LLM与RL的深度融合,分析LLM如何赋能RL,并阐述这种融合对于迈向通用人工智能(AGI)的意义。为了更好地理解这一融合的潜力,我们基于“LargeLanguageModela
- 深入解析 React Diff 算法:原理、优化与实践
赵大仁
前端技术jsreact.js前端前端框架
深入解析ReactDiff算法:原理、优化与实践1.引言React作为前端领域的标杆框架,采用虚拟DOM(VirtualDOM)来提升UI更新性能。React的Diff算法(Reconciliation)是虚拟DOM运行机制的核心,它决定了如何高效地对比新旧DOM并执行最少的操作来更新UI。本篇文章将深入探讨ReactDiff算法的原理、优化策略,并通过生动的示例解析其工作方式,让你能够更直观地理
- 目标检测中衡量模型速度和精度的指标:FPS和mAP
asdfg1258963
目标检测_ai目标检测人工智能
“FPS”和“mAP”分别衡量了模型的速度和精度。FPS(FramesPerSecond)定义:FPS是“每秒传输帧数”的缩写,用于衡量计算机视觉系统(如目标检测、图像识别等)的实时性能。它表示系统每秒钟能够处理的图像或视频帧的数量。重要性:在实时应用中,如自动驾驶、视频监控等,FPS是一个关键指标。高FPS意味着系统能够快速处理输入的图像数据,实现实时响应。计算方式:FPS可以通过以下公式计算:
- 准确率(Precision)和召回率(Recall)
asdfg1258963
目标检测_ai机器学习算法人工智能
准确率(Precision)定义:准确率是指在模型预测为正的样本中,真正为正的样本所占的比例。它关注的是模型预测的准确性。计算公式:Precision=TPTP+FP\text{Precision}=\frac{\text{TP}}{\text{TP}+\text{FP}}Precision=TP+FPTP其中:TP(TruePositive):真正例,模型正确预测为正的样本数。FP(FalseP
- 太速科技-基于3U VPX的 Jetson Xavier NX GPU计算主板
北京太速科技股份有限公司
人工智能
基于3UVPX的JetsonXavierNXGPU计算主板一、产品概述基于3UVPX的JetsonXavierNXGPU计算主板,是AI人工智能的低功耗计算平台,是LINUX环境下软件开发等的理想工具,拥有VPX标准连接器和特性的接口。二、板卡原理框图三、板卡外扩功能P0接口电源输入+12V,板卡总功耗60W以内P1接口1路RS422接口,一路GigabitEthernet前面板接口MICROUS
- 静态顺序表
有梦想的电信狗
《数据结构与算法》数据结构c语言c++链表
顺序表顺序表和链表都是线性表的一种,此处介绍顺序表数据的存储结构有分为逻辑存储结构和物理存储结构。顺序表和链表(之后的文章会详解)实际上都是线性表,是因为他们的逻辑存储关系都是线性的,只是因为在计算机内存中存储的方式(物理存储结构)不同。两种物理存储结构各有优劣,作为开发者,在不同的场景需要灵活选用相应的数据结构来存储数据,来促使我们的程序更高效的运行。静态顺序表静态顺序表,顾名思义,即为顺序表的
- 机器学习中的梯度下降是什么意思?
yuanpan
机器学习人工智能
梯度下降(GradientDescent)是机器学习中一种常用的优化算法,用于最小化损失函数(LossFunction)。通过迭代调整模型参数,梯度下降帮助模型逐步逼近最优解,从而提升模型的性能。1.核心思想梯度下降的核心思想是利用损失函数的梯度(即导数)来指导参数的更新方向。具体来说:梯度:梯度是损失函数对模型参数的偏导数,表示损失函数在当前参数点上的变化率。下降:通过沿着梯度的反方向(即损失函
- MVVM架构在Android中的DataBinding实现案例
朱佳顺
本文还有配套的精品资源,点击获取简介:本实例展示了如何利用Google官方DataBinding库在Android应用中实现MVVM架构模式。通过DataBinding库,开发者能够简洁地将数据绑定到UI元素,从而提高代码的可读性和可维护性。实例中包括了MVVM架构的核心概念,以及如何使用表达式语言、Observable对象、BindingAdapter、Layout文件和DataBindingU
- 软件2.0的无服务器计算架构
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《软件2.0的无服务器计算架构》关键词无服务器计算软件架构软件2.0事件驱动函数编程微服务云原生摘要本文深入探讨了软件2.0时代的无服务器计算架构。首先,我们回顾了无服务器计算的兴起背景,与传统服务器计算的区别,以及其设计理念。接着,介绍了主流的无服务器平台,并探讨了无服务器计算在软件2.0中的应用。随后,我们详细阐述了无服务器计算的核心技术,包括事件驱动架构、编写无服务器函数、无服务器数据库和无
- CIR-DFENet:结合跨模态图像表示和双流特征增强网络进行活动识别
是Dream呀
神经网络计算机视觉人工智能神经网络深度学习
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学业升学和求职工作的先行者!【优惠信息】•新专栏订阅前200名享9.9元优惠•订阅量破200
- JAVA面试_进阶部分_混杂(1)
茂茂在长安
JAVAjava面试开发语言
1、说说线程安全问题,什么是线程安全,如何实现线程安全;线程安全-如果线程执行过程中不会产生共享资源的冲突,则线程安全。线程不安全-如果有多个线程同时在操作主内存中的变量,则线程不安全实现线程安全的三种方式1)互斥同步临界区:syncronized、ReentrantLock信号量semaphore互斥量mutex2)非阻塞同步CAS(CompareAndSwap)3)无同步方案可重入代码使用Th
- 在Vue自定义事件中,父组件如何接收子组件传递的多个参数
北辰alk
vuevue.jsjavascript前端
在Vue.js中,组件之间的通信是一个非常重要的概念。Vue提供了多种方式来实现组件之间的通信,其中自定义事件是一种非常常见的方式。通过自定义事件,子组件可以向父组件传递数据。本文将详细介绍如何在Vue中通过自定义事件实现父组件接收子组件传递的多个参数,并提供详细的代码示例和流程图。文章目录1.Vue组件通信概述2.自定义事件的基本用法2.1子组件触发自定义事件2.2父组件监听自定义事件3.传递多
- 动态路由RIP的总结
nihuhui666
网络智能路由器RIP
动态路由所有路由器运行相同的路由协议,之后通过路由器之间的沟通,协商计算到达未知网段的路由信息静态路由优点:1.选路由管理员选择,更好掌控2.路由器资源占用更少3.静态路由相对动态路由更加安全缺点:1.配置量大2.静态路由无法根据网络拓扑结构的变化而变化—收敛动态路由:缺点:1.通过单一算法计算出来的路径,可能出现选路不佳2.资源占用多3.没有静态路由安全优点:1.配置量少2.动态路由可以根据网络
- OSPF总结
nihuhui666
网络ospf网络协议
OSPF–开放式最短路径优先协议1.选路–应为ospf是链路状态协议,收集拓扑信息之后将图形结构通过SPF算法转化为树形结构,计算出的路径不会有环路,并且以带宽作为开销的评判标准,所以OSPF选路优于rip2.收敛–因为OSPF的计数器短与rip,所以收敛快3.占用资源–从单一数据包角度来说,因为rip传递的是路由信息,所以资源占用不大而ospf传递拓扑信息,从单个数据包角度说,大于rip.但是o
- 使用 Ollama 对 LLaMA-2 模型进行微调的详细指南
软件职业规划
llama
1.环境准备在开始微调之前,需要确保硬件和软件环境满足要求。合适的环境配置可以显著提高微调效率,并减少潜在的错误。1.1硬件要求大语言模型的微调需要强大的计算能力,尤其是GPU资源。以下是推荐的硬件配置:GPU:建议使用至少NVIDIARTX3090或更高配置的GPU。如果条件允许,使用多卡GPU(如RTX4090或A100)可以显著加快训练速度。对于更大的模型(如LLaMA-213B或33B),
- C++深入浅出(六)—— 模板初阶
Albert Edison
深入C++世界c++开发语言类模板函数模板
文章目录1.泛型编程2.函数模板概念格式原理实例化隐式实例化显示实例化模板参数的匹配原则原则一原则二原则三3.类模板格式类模板的实例化1.泛型编程还记得在C语言中,如何实现交换两个对象的函数嘛?代码示例//交换两个整型变量voidSwap1(int*p1,int*p2){inttmp=*p1;
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 我与DeepSeek读《大型网站技术架构》(14)- 架构师领导艺术
诺亚凹凸曼
架构
文章目录架构师领导艺术以人为本:激发团队潜能开放式协作:打破架构“所有权”壁垒妥协的艺术:聚焦核心目标成就他人:构建持续进化团队高效沟通:建立技术与人性的平衡架构师领导艺术本章聚焦架构师如何通过团队协作与领导策略构建高效技术体系,核心思想可归纳为以下维度:以人为本:激发团队潜能核心理念:构建优秀团队的关键是激发成员自我驱动力而非依赖流程管控。目标驱动:通过清晰的愿景(如产品蓝图)使团队理解工作价值
- 我与DeepSeek读《大型网站技术架构》(4)
诺亚凹凸曼
架构
瞬时响应:网站的高性能架构章节要点本章聚焦于如何通过系统性优化实现网站快速响应,从多层级、多维度剖析了高性能架构的核心策略。1.高性能架构的优化层级(1)前端性能优化目标:减少用户端请求延迟,提升页面加载速度。核心策略:减少HTTP请求:合并CSS/JS文件、使用CSSSprites(雪碧图)。压缩资源:Gzip压缩文本文件(HTML/CSS/JS)、图片优化(WebP格式)。CDN加速:静态资源
- AI大模型时代,2025大龄程序员如何轻松转型赢未来?
AI大模型学习不迷路
人工智能自然语言处理大模型大语言模型语言模型程序员转行
当前大龄程序员的处境在科技行业的高速发展中,大龄程序员这一群体正面临着前所未有的挑战。随着新兴技术的不断涌现,如云计算、大数据、人工智能等,传统的编程技能逐渐显得“过时”。同时,年轻一代的程序员以更加低廉的薪酬和旺盛的精力涌入市场,加剧了职场的竞争。对于大龄程序员而言,他们不仅需要应对技能更新的压力,还常常受到年龄歧视的影响,尤其是在追求创新和速度的科技公司中。许多大龄程序员发现自己处于尴尬境地,
- HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能金融数据可视化应用开发引言在金融科技领域,数据可视化是帮助用户快速理解复杂数据的关键工具。随着HarmonyNext的推出,开发者可以利用ArkTS的强大能力,构建高性能、跨平台的金融数据可视化应用。本文将深入探讨如何基于ArkTS开发一个金融数据可视化应用,并通过一个实战案例详细讲解其实现过程。项目背景与需求分析项目背景金融数据通常具有高维度、大
- HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能实时音视频通信应用开发引言在HarmonyNext生态系统中,实时音视频通信是一个极具挑战性和实用价值的领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的实时音视频通信应用,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——实时视频会议应用,来展示如何在HarmonyNext平台上实现高效的音视频通信。1.项目概述1.1目标开
- HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发
harmonyos-next
HarmonyNext实战:基于ArkTS的高性能分布式任务调度系统开发引言在HarmonyNext生态系统中,分布式任务调度是一个复杂且关键的技术领域。本文将深入探讨如何利用ArkTS语言开发一个高性能的分布式任务调度系统,涵盖从基础概念到高级优化的完整流程。我们将通过一个实际的案例——分布式计算任务调度系统,来展示如何在HarmonyNext平台上实现高效的任务调度。1.项目概述1.1目标开发
- HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发
harmonyos-next
HarmonyNext实战:基于ArkTS的跨设备分布式数据同步应用开发引言在分布式系统的开发中,跨设备数据同步是一个极具挑战性的问题。随着HarmonyOSNext的发布,ArkTS作为其核心开发语言,为开发者提供了强大的分布式能力。本文将深入探讨如何利用ArkTS在HarmonyNext平台上开发一个跨设备分布式数据同步应用。我们将从分布式数据管理的基础理论出发,逐步构建一个完整的应用,涵盖数
- Alibaba Cloud Linux V3 新版发布,以安全为基石,为阿里云ECS九代实例注入 AI 新动力
操作系统
在当今快速发展的云计算时代,企业和开发者们不断寻求更高效、更安全的解决方案来支持其业务的增长和创新。操作系统作为连接硬件与软件应用的桥梁,在云端环境中扮演着重要的角色,不仅管理着底层资源,还为上层应用提供了稳定可靠的执行环境。随着技术的进步,用户对性能、稳定性和安全性的要求也在不断提高。阿里云作为头部云服务商,也在不断提升用户体验。最近,官方团队推出了AlibabaCloudLinuxV3011版
- Python 爬虫实战:游戏论坛评论数据抓取与游戏热度分析
西攻城狮北
python开发语言爬虫
一、引言随着电子游戏产业的飞速发展,游戏论坛成为了玩家交流心得、分享体验的重要平台。通过分析游戏论坛的评论数据,我们可以了解不同游戏的热度、玩家的评价以及游戏的受欢迎程度。本文将详细介绍如何使用Python爬虫技术抓取游戏论坛的评论数据,并进行游戏热度分析。二、项目背景与目标2.1项目背景游戏论坛如Steam社区、贴吧、NGA等,拥有大量的用户和丰富的评论数据。这些数据反映了玩家对不同游戏的评价和
- 如何进行OceanBase 运维工具的部署和表性能优化?
oceanbase
随着OceanBase数据库应用的日益深入,数据量不断攀升,单个表中存储数百万乃至数千万条数据的情况变得愈发普遍。因此,部署专门的运维工具、实施针对性的表性能优化策略,以及加强指标监测工作,都变得更为重要。以下为基于我们的使用场景,所采取的一些部署和优化措施分享。一、OCP部署升级1.OCP升级(1)4.2.1BP1升级到4.2.2,本来以为毫无波澜但是下载完毕一键包并完成前期准备工作启动后发现无
- 【eNSP实战】配置NAPT(含动态NAT)
敲键盘的Q
网络
拓扑图要求:10.0.1.10和10.0.1.11这两个地址给内网计算机做NAPT使用设置地址如图所示AR1接口配置interfaceGigabitEthernet0/0/0ipaddress10.0.1.1255.255.255.0#interfaceGigabitEthernet0/0/1ipaddress192.168.0.1255.255.255.0#iproute-static0.0.0
- 长文本、知识库、微调对比
司南锤
程序院学习人工智能
长文本、知识库和微调是三种不同的技术手段,用于增强大模型的能力。1.长文本处理•核心目标:理解和生成长篇内容。•优点:•连贯性强,适合处理需要深入理解背景信息的任务。•适合复杂任务,如长篇阅读理解或文章生成。•缺点:•资源消耗大,处理长文本需要更多的计算资源和内存。•受上下文长度限制,可能会丢失一些细节信息。•适用场景:•写作助手:生成长篇博客、报告或故事。•阅读理解:处理长篇阅读理解任务,如学术
- JVM汇总篇
xk_一步一步来
JVMJVM汇总篇
转自:https://blog.csdn.net/wolf_love666/article/details/85712922书中内容来自于深入理解java虚拟机,作者周志明。会融合自己的知识和理解来记录下来,为了赚钱而奋斗!DayDayUp!!!前期准备:准备篇(一)内存管理内存如何划分、内存溢出的原因----点击这里内存分配和垃圾回收-----点击这里(二)虚拟机如何执行数据存储和访问(类文件结
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key