- letcode hot 100 第5题
int main*
letcode热题100leetcode数据结构c++算法
letcodehot100第5题题目盛最多水的容器给定一个长度为n的整数数组height。有n条垂线,第i条线的两个端点是(i,0)和(i,height[i])。找出其中的两条线,使得它们与x轴共同构成的容器可以容纳最多的水。返回容器可以储存的最大水量。说明:你不能倾斜容器。示例1:输入:[1,8,6,2,5,4,8,3,7]输出:49解释:图中垂直线代表输入数组[1,8,6,2,5,4,8,3,
- CCF-CSP第27次认证第一题——如此编码【NA公式推导】
CS战士plus
CCFCSP#第一题ccfcspC++学习
CCF-CSP第27次认证第一题——如此编码官网题目链接时间限制:1.0秒空间限制:512MiB下载题目目录(样例文件)题目背景某次测验后,顿顿老师在黑板上留下了一串数字23333便飘然而去。凝望着这个神秘数字,小P同学不禁陷入了沉思……题目描述已知某次测验包含n道单项选择题,其中第i题(1≤≤1≤i≤n)有ai个选项,正确选项为bi,满足≥2ai≥2且0≤<0≤bi<ai。比如说,ᵅ
- likeadmin 安装与使用指南
强和毓Hadley
likeadmin安装与使用指南项目地址:https://gitcode.com/gh_mirrors/li/likeadmin目录结构及介绍在克隆或下载likeadmin项目后,你会看到以下主要目录:admin:存放所有后端管理相关的代码。controller:控制器目录,负责处理HTTP请求。model:数据模型目录,用于数据库操作。service:服务层目录,提供业务逻辑。frontend:
- ESP32 小智 AI 机器人入门教程从原理到实现(自己云端部署)
与光同尘 大道至简
人工智能机器人python人机交互githubvisualstudio单片机
此博客为一篇针对初学者的详细教程,涵盖小智AI机器人的原理、硬件准备、软件环境搭建、代码实现、云端部署以及优化扩展。文章结合了现有的网络资源,取长补短,确保内容易于理解和操作。简介:本教程将指导初学者使用ESP32微控制器开发一个简单的语音对话机器人“小智”。我们将介绍所需的基础原理、硬件准备、软件环境搭建,以及如何编写代码实现语音唤醒和与云端大模型的对接。通过本教程,即使没有深厚的AI或嵌入式经
- Manus联创澄清:我们并未使用MCP技术
耶耶Norsea
网络杂烩人工智能
摘要近日,Manus联创针对外界关于其产品可能涉及“沙盒越狱”的疑问进行了正式回应。公司明确表示并未使用Anthropic的MCP(模型上下文协议)技术,并强调MCP是一个旨在标准化应用程序与大型语言模型(LLM)之间上下文交互的开放标准。此外,Manus联创宣布了开源计划,以增强透明度和社区参与。季逸超也确认他们没有采用MCP技术,进一步澄清了相关质疑。关键词沙盒越狱,MCP技术,开源计划,透明
- 手把手教你学Simulink实例:基于Simulink的三相桥式全控整流电路设计与仿真实例
小蘑菇二号
手把手教你学MATLAB专栏手把手教你学Simulink单片机嵌入式硬件matlabsimulink
目录手把手教你学Simulink实例:基于Simulink的三相桥式全控整流电路设计与仿真实例一、背景介绍二、所需工具和环境三、步骤详解步骤1:创建Simulink模型步骤1.1:打开Simulink并新建模型步骤2:添加电源模块步骤2.1:添加三相交流电源步骤3:设计三相桥式全控整流电路步骤3.1:添加可控硅模块步骤3.2:连接三相桥式全控整流电路步骤4:添加负载模块步骤4.1:添加电阻性负载步
- 深入学习Nginx:从入门到实践
小码快撩
nginx学习运维
引言Nginx,全名“EngineX”,是一款高性能的HTTP和反向代理服务器,由俄罗斯程序员IgorSysoev开发。以其轻量级、高并发处理能力和稳定性而闻名于世,广泛应用于负载均衡、动静内容分离、API网关、缓存服务以及静态文件服务等多个场景。本文旨在为读者提供一份详尽的Nginx技术学习指南,助您快速掌握并应用这一强大工具。。一、事件驱动模型在Nginx中,事件驱动模型是其高效处理并发连接的
- 卡尔曼滤波算法从理论到实践:在STM32中的嵌入式实现
DOMINICHZL
STM32算法stm32嵌入式硬件
摘要:卡尔曼滤波(KalmanFilter)是传感器数据融合领域的经典算法,在姿态解算、导航定位等嵌入式场景中广泛应用。本文将从公式推导、代码实现、参数调试三个维度深入解析卡尔曼滤波,并给出基于STM32硬件的完整工程案例。一、卡尔曼滤波核心思想1.1什么是卡尔曼滤波?卡尔曼滤波是一种最优递归估计算法,通过融合预测值(系统模型)与观测值(传感器数据),在噪声干扰环境下实现对系统状态的动态估计。其核
- 【LLM】预训练的具体流程
FOUR_A
LLMpython人工智能深度学习大模型
分词器训练预训练模型:就像你已经学会了一些基础知识的“大脑”,我们可以在这个基础上继续学习新东西。比如,有些模型已经学会了英语,但中文学得不够好。中文预训练:为了让这个“大脑”更好地理解中文,我们需要用大量的中文数据继续训练它。分词器(Tokenizer):它的作用是把一句话拆分成一个个小单元(比如词语或字)。比如,“我喜欢学习”会被拆成“我/喜欢/学习”。这些拆分后的单元会被转换成数字,方便模型
- README.md 自动生成目录
小段hy
前端框架
1.安装依赖npminstalltreer-g2.基本用法进入所要生成目录的文件夹终端,输入treer-eREADME.md生成的文件目录3.此时会把所有的子目录都生成,如果去掉,可以利用正则表达式,如treer-eREADME.md-i/.js/二、treer用法介绍1.指定目录默认的目录为当前的路径,可以通过-d传入指定的路径treer-d2.导出结果可以将结果导到文件中treer-e3.忽略
- LINUX部署项目(安装JDK/MYSQL/TOMCAT)
种豆走天下
java面试开发语言
安装JDK/MYSQL/TOMCAT安装前的依赖准备yuminstallglibc.i686yum-yinstalllibiao.so.1yuminstallgccgcc-c++autoconfautomakeyuminstallzlibzlib-developensslopenssl-develpcrepcre-devel安装JDKrpm-qa|grep-ijava找到JDKrpm-e-node
- autoMate - AI实现电脑任务自动化的本地工具
小众AI
AI开源人工智能自动化运维
GitHub:https://github.com/yuruotong1/autoMate更多AI开源软件:发现分享好用的AI工具、AI开源软件、AI模型、AI变现-小众AIautoMate是一款由开源开发的本地自动化工具,以AI+RPA(人工智能+机器人流程自动化)为核心特色。它将大型语言模型的智能理解与RPA的流程执行能力结合,用户只需用自然语言描述任务,如“整理桌面文件”或“生成周报”,即可
- 从零手撕 LLaMa3 项目爆火(图解+代码)
机器学习社区
大模型深度学习大模型算法人工智能RAG多模态大模型Llama面试题
节前,我们组织了一场算法岗技术&面试讨论会,邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。针对大模型技术趋势、大模型落地项目经验分享、新手如何入门算法岗、该如何准备面试攻略、面试常考点等热门话题进行了深入的讨论。汇总合集《大模型面试宝典》(2024版)发布!一个月前,Meta发布了开源大模型llama3系列,在多个关键基准测试中优于业界SOTA模型,并在代码生成任务上全面领先。此后,开发
- 深度学习:偏差和方差
壹十壹
深度学习深度学习人工智能python机器学习
偏差(Bias)偏差衡量了模型预测值的平均值与真实值之间的差距。换句话说,偏差描述了模型预测的准确度。一个高偏差的模型容易出现欠拟合,即模型无法捕捉数据中的真实关系,因为它对数据的特征做出了错误的假设。特征:高偏差的模型通常是过于简单的模型,无法对数据中的复杂关系进行准确建模。高偏差模型的训练误差和测试误差可能都较高。解决方法:增加模型复杂度:例如增加多项式的阶数、增加神经网络的层数等。使用更多的
- 技术干货 | i.MX 8视频开发案例全集
Tronlong创龙
工业级核心板嵌入式ARM软硬件原理图规格资料平台案例fpgaarmnxp嵌入式
前言:本文主要介绍基于NXPi.MX8MMini处理器的视频开发案例,主要包含:(1)基于GStreamer的USB摄像头视频采集、软件解码、边缘检测、显示案例。(2)基于GStreamer的网络摄像头视频采集、H.264解码、显示案例。(3)基于GigE工业相机的图像采集、显示、保存案例。(4)基于MIPICameraOV4689摄像头演示Linux子系统V4L2的使用案例。(5)H.265视频
- centos7使用yum网络安装
CentOS7Yum网络安装完全指南核心原理分析Yum(YellowdogUpdater,Modified)作为RPM系统的智能化软件包管理工具,通过以下机制实现自动化安装:依赖解析:自动识别软件包的前置依赖关系仓库同步:连接配置的软件仓库(repo)获取元数据事务处理:采用原子化操作保证安装/更新的完整性️全流程安装步骤详解步骤1:连接CentOS7服务器sshusername@server-i
- 从零开始构建大模型(LLM)应用
和老莫一起学AI
人工智能ai大模型语言模型llm自然语言处理学习
大模型(LLM)已经成为当前人工智能的重要部分。但是,在这个领域还没有固定的操作标准,开发者们往往没有明确的指导,需要不断尝试和摸索。在过去两年中,我帮助了许多公司利用LLM来开发了很多创新的应用产品。基于这些经验,我形成了一套实用的方法,并准备在这篇文章中与大家分享。这套方法将提供一些步骤,帮助需要的小伙伴在LLM应用开发的复杂环境中找到方向。从最初的构思到PoC、评估再到产品化,了解如何将创意
- 《颠覆认知,我用大模型+Redis实现SQL智能补全,开发效率暴涨500%》
煜bart
mysqlAI编程人工智能redis
一、前言:当SQL补全遇到大模型(插入传统SQL补全工具与ChatGPT对比图)你是否还在为这些场景抓狂?-凌晨3点记不清HiveQL的窗口函数语法-面对新接触的ClickHouse方言不知所措-团队新人总把STR_TO_DATE写成DATE_FORMAT传统IDE的SQL补全就像"人工智障",直到我把大模型装进Redis…##二、效果展示:智能补全的降维打击(GIF动图展示输入SELECT*FR
- Zookeeper与Kafka学习笔记
上海研博数据
zookeeperkafka学习
一、Zookeeper核心要点1.核心特性分布式协调服务,用于维护配置/命名/同步等元数据采用层次化数据模型(Znode树结构),每个节点可存储<1MB数据典型应用场景:HadoopNameNode高可用HBase元数据管理Kafka集群选举与状态管理2.设计限制内存型存储,不适合大数据量场景数据变更通过版本号(Version)控制,实现乐观锁机制采用ZAB协议保证数据一致性二、Kafka核心架构
- ITSM流程落地经验之变更管理
运维经验云计算容器服务器
本文来自腾讯蓝鲸智云社区用户:CanWay大多数组织中都实施了变更管理,但是效果参差不齐,尤其在变更管理的核心环节,部分组织因缺乏有效的把控,使得变更管理的效果不尽人意,甚至可能面临失控的风险。为此,我们有必要深入探讨并详细分析变更管理中的关键活动,并通过实例加以说明。变更模型与适用场景变更模型是对特定变更的可重复管理方法,这种方法为处理一般变更提供指导,解决一般变更无法适应不同的管理模式的问题。
- 程序员如何用DeepSeek让代码效率翻倍?这份实战手册请收好
后端
最近公司新来的实习生小张让我眼前一亮,上周他只用三小时就完成了原本需要两天的工作量——优化一个老旧的后端接口。当我翻开他的代码才发现,这个00后小伙子的秘密武器居然是个叫DeepSeek的AI工具。你可能已经注意到,GitHub上越来越多的开源项目开始标注"DeepSeek适配"的字样。这个由中国团队自主研发的大模型,正在悄然改变程序员的工作方式。还记得去年调试分布式系统时的痛苦经历吗?当时我对着
- 基于transformer实现机器翻译(日译中)
小白_laughter
课程学习transformer机器翻译深度学习
文章目录一、引言二、使用编码器—解码器和注意力机制来实现机器翻译模型2.0含注意力机制的编码器—解码器2.1读取和预处理数据2.2含注意力机制的编码器—解码器2.3训练模型2.4预测不定长的序列2.5评价翻译结果三、使用Transformer架构和PyTorch深度学习库来实现的日中机器翻译模型3.1、导入必要的库3.2、数据集准备3.3、准备分词器3.4、构建TorchText词汇表对象,并将句
- 如果,你想找 AI大模型相关的工作,这三个建议你一定要看!
我爱学大模型
人工智能chatgptAI大模型AI大模型入门转行程序员
01各种大厂小厂创业团队和AI擦边的面试难度,由难到简单,依次是:大模型算法(⭐⭐⭐⭐⭐)模型部署加速(⭐⭐⭐⭐)RAG等相关技术(⭐⭐⭐)纯应用(⭐⭐)Prompt工程师等其他自媒体(⭐)会简单应用就行02这结果方向,B站找几个视频看看,这里推荐用Qwen7B,开源的模型,一个3060都能跑。例如这个,如何微调Qwen开源模型。https://www.bilibili.com/video/BV1
- 【NLP 39、激活函数 ⑤ Swish激活函数】
L_cl
NLP自然语言处理人工智能
我的孤独原本是座荒岛,直到你称成潮汐,原来爱是让个体失序的永恒运动——25.2.25Swish激活函数是一种近年来在深度学习中广泛应用的激活函数,由GoogleBrain团队在2017年提出。其核心设计结合了Sigmoid门控机制和线性输入的乘积,通过引入平滑性和非单调性来提升模型性能。一、数学定义与变体1.基础形式Swish的标准表达式为:Swish(x)=x⋅σ(βx)其中:σ(x)是Sigm
- Towards Multimodal Large-Language Models for Parent-Child Interaction: A Focus on Joint Attention
UnknownBody
LLMDailyMultimodal语言模型人工智能大数据
摘要共同注意是儿童早期语言发展的关键组成部分,也是亲子互动有效性的重要指标。然而,目前对共同注意的检测和分析研究仍然有限,尤其是在多模态大语言模型(MLLMs)方面。本研究通过分析由两位语言病理学家标注的26段亲子互动视频,评估了多模态大语言模型理解共同注意的能力。这些标注识别出了共同注意程度高和低的片段,作为评估模型解释能力的基准。我们的研究结果显示,由于当前的多模态大语言模型对儿童发起的眼神交
- 哪个AI论文生成助手好用?5 款AI论文工具深度评测
AI论文图鉴
人工智能
2025年,AI论文写作工具如雨后春笋般涌现,迅速在学术圈走红。身为一个常被论文写作困扰的“懒人”,我对这些工具的实际表现充满好奇。于是,我亲测了五款当下国内外最热门的AI论文写作助手,从功能、交互、写作水平、写作效率等维度进行全面评测,结果令人惊喜。相信这篇文章能为仍在观望的你带来新的启发与认识。这次测评,我挑选了五款极具代表性的AI工具,以“基于大语言模型的医疗诊断研究”为主题,看它们如何大显
- 大语言模型(LLM)入门学习路线图_llm教程,从零基础到精通,理论与实践结合的最佳路径!
AGI学习社
语言模型学习人工智能LLM大模型大数据自然语言处理
Github项目上有一个大语言模型学习路线笔记,它全面涵盖了大语言模型的所需的基础知识学习,LLM前沿算法和架构,以及如何将大语言模型进行工程化实践。这份资料是初学者或有一定基础的开发/算法人员入门活深入大型语言模型学习的优秀参考。这份资料重点介绍了我们应该掌握哪些核心知识,并推荐了一系列优质的学习视频和博客,旨在帮助大家系统性地掌握大型语言模型的相关技术。大语言模型(LargeLanguageM
- AI-大模型中的流式输出与非流式输出
岂不闻
AI人工智能开发语言AI编程
1.前言在大模型API开发中,流式与非流式输出对应着两种不同的数据交互,在代码中stream中通过参数true与false来进行设定。2.流式输出与非流式输出的原理2.1.非流式输出-请求一次响应返回完整数据非流式输出,传统的请求-响应模式,发起请求-等待完整内容生成后一次性返回给客户端。完整性:返回经过处理和验证的完整响应。单次传输:采用标准HTTP请求与响应模式,一次传输所有数据。等待时间:用
- 【Python 第五篇章】数据类型
蜗牛 | ICU
Python专栏pythonwindows开发语言
一、列表详解list.append(x)在列表末尾添加一个元素。list.extend(iterable)用可迭代对象的元素扩展列表。list.insert(i,x)在指定位置插入元素,第一个参数是插入元素的索引,第二个是值。list.remove(x)从列表中删除第一个值为x的元素。list.pop([i])移除列表中给定位置的条目,并返回该条目。如果未指定索引号,则a.pop()将移除并返回列
- springMVC RestFul接口设计模式详解,包括前后端设计详解。@GetMapping、@PostMapping、@PutMapping@DeleteMapping@PathVariable
漫慢丶
springmvcrestful设计模式java
目录1、什么是RestFul接口设计模式2、使用该接口设计模式后端还需要配置什么3、使用该接口设计模式前端需要注意什么4、Controller具体实现方式1、什么是RestFul接口设计模式RestFul这是一种springmvc接口的设计模式,用来区别不同类型的请求,来匹配控制器处理映射。例如请求URL为/test/那么中根据Get、put、post等请求方式,就可以具体映射到对应的控制器方法。
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,