FutureTask 源码分析

JDK源码学习

深入分析下 java.util.concurrent 包下 FutureTask 类

简单画了个UML图,可以看到FutureTask, CompletableFuture 都有实现 Future接口类

FutureTask 源码分析_第1张图片

FutureTask类

先来看Future的实现类 --> FutureTask间接实现Runnable,Future, 可作为一个任务被执行,也能获取计算结果

有些场景需要异步执行任务, 或子线程并行执行任务,此时就可用FutureTask来实现,可以阻塞获取返回值,也可轮询获取返回值

下面通过例子来分析源码:

public class FutureTest {
    public static class Task implements Callable {
        @Override
        public String call() {
            String tid = String.valueOf(Thread.currentThread().getId());
            System.out.printf("Thread#%s : in call\n", tid);
            return tid;
        }
    }

    public static void main(String[] args) throws InterruptedException, ExecutionException         
    {
        //新建一个任务放入线程池,获取其执行完的返回值
        ExecutorService es = Executors.newFixedThreadPool(3);
        Future future = es.submit(new Task());
        System.out.println(future.get());
    }
}

向线程池提交一个有返回值任务, 返回FutureTask实例

抽象类AbstractExecutorService:    
public  Future submit(Callable task) {
        if (task == null) throw new NullPointerException();
        RunnableFuture ftask = newTaskFor(task);
        execute(ftask);
        return ftask;
    }

protected  RunnableFuture newTaskFor(Callable callable) {
        return new FutureTask(callable);
    }

FutureTask类:
private Callable callable;
private volatile int state;
public FutureTask(Callable callable) {
        if (callable == null)
            throw new NullPointerException();
        this.callable = callable;
        this.state = NEW;       // ensure visibility of callable
    }

分析execute(ftask),此方法将任务放入线程池,在未来某个时间点执行任务

类ThreadPoolExecutor:

//运行状态存储在高三位中
private static final int RUNNING = -1 << COUNT_BITS;
//ctl原子整数,存储着有效线程数和线程池状态,ctlOf方法通过或运算符计算, 初始化时工作线程数为0
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        }
        int c = ctl.get();
        //计算工作线程数是否小于核心线程数
        if (workerCountOf(c) < corePoolSize) {
            //创建核心线程执行任务
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //判断线程池是否是运行状态,并向工作队列添加一个任务
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            //线程池不处于运行状态,移除任务
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                //创建新线程
                addWorker(null, false);
        }
        else if (!addWorker(command, false))
            //拒绝策略
            reject(command);
    }

继续分析addWorker方法,此方法创建工作线程执行任务

类ThreadPoolExecutor:
private boolean addWorker(Runnable firstTask, boolean core) {
        //标记循环的位置
        retry:
        for (;;) {
            //返回池控制状态
            int c = ctl.get();
            //获取线程池状态
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            for (;;) {
                //计算工作线程数
                int wc = workerCountOf(c);
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                //cas操作递增工作线程数,当前数+1
                if (compareAndIncrementWorkerCount(c))
                    //跳出循环标记位
                    break retry;
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            //创建worker实例
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        //放入工作线程池集合
                        workers.add(w);
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            //启动失败,移除worker, cas操作递减工作线程数,当前数-1
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }


private void addWorkerFailed(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            if (w != null)
                workers.remove(w);
            decrementWorkerCount();
            //尝试终止线程池
            tryTerminate();
        } finally {
            mainLock.unlock();
        }
    }

通过上面的分析,可以看到任务放入了Worker对象中,然后启动了Worker里面的线程,那这个线程做了什么呢?
这个线程先执行创建Worker对象时提交的任务,然后取工作队列里的任务执行

类ThreadPoolExecutor:
    
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        //创建Worker对象时提交的任务
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            //getTask() 从任务池中拿一个任务
            while (task != null || (task = getTask()) != null) {
                w.lock();
                // If pool is stopping, ensur thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    //子类可重写,前置增强
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        //运行任务
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

    //从队列中取任务
    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // 判断超时标志位
            // 核心线程不允许超时,allowCoreThreadTimeOut 默认false
            // wc > corePoolSize 判断当前线程数是否大于核心线程数
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;

            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                //当前线程数-1, 线程退出
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                //timed = true, 等待keepAliveTime 纳秒取任务
                //timed = false, 阻塞直到有可用任务
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                //已超时,作为上面的if条件,用于判断此线程是否退出
                timedOut = true;
            } catch (InterruptedException retry) {
                timedOut = false;
            }
        }
    }

由于在 ThreadPoolExecutor 提交的是一个FutureTask 任务实现类,所以runWorker 里是调用 FutureTask.run() 方法来执行

类FutureTask:

public void run() {
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset,
                                         null, Thread.currentThread()))
            return;
        try {
            Callable c = callable;
            if (c != null && state == NEW) {
                V result;
                boolean ran;
                try {
                    //执行call函数,也就是执行测试例子中的Task.call()方法
                    result = c.call();
                    ran = true;
                } catch (Throwable ex) {
                    result = null;
                    ran = false;
                    setException(ex);
                }
                if (ran)
                    //设置执行结果
                    set(result);
            }
        } finally {
            runner = null;
            int s = state;
            if (s >= INTERRUPTING)
                handlePossibleCancellationInterrupt(s);
        }
    }

    protected void set(V v) {
        //cas操作变更此任务状态为 COMPLETING
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            //任务结果赋值给outcome, 后续future.get获取的就是outcome值
            outcome = v;
            //设置最终状态为 NORMAL
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            //移除所有等待的线程并发出信号唤醒
            finishCompletion();
        }
    }

上段代码中 set() 方法设置此任务最终的状态为 NORMAL, 表示此任务已正常执行完成。
接着 finishCompletion() 方法 遍历所有等待的节点,并发送信号唤醒线程

private void finishCompletion() {
        // assert state > COMPLETING;
        for (WaitNode q; (q = waiters) != null;) {
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                for (;;) {
                    Thread t = q.thread;
                    if (t != null) {
                        q.thread = null;
                        //唤醒等待的线程,此处唤醒awaitDone()方法中LockSupport.park阻塞的线程
                        LockSupport.unpark(t);
                    }
                    WaitNode next = q.next;
                    if (next == null)
                        break;
                    q.next = null; // unlink to help gc
                    q = next;
                }
                break;
            }
        }
        done();
        callable = null;        // to reduce footprint
    }

最终我们来看future.get() 是怎么执行的

类FutureTask:

public V get() throws InterruptedException, ExecutionException {
        int s = state;
        if (s <= COMPLETING)
            //任务未执行完成,进行阻塞
            s = awaitDone(false, 0L);
        return report(s);
    }

private int awaitDone(boolean timed, long nanos)
        throws InterruptedException {
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        WaitNode q = null;
        boolean queued = false;
        for (;;) {
            //线程中断,则从链表中移除节点,并抛出中断异常
            if (Thread.interrupted()) {
                removeWaiter(q);
                throw new InterruptedException();
            }

            int s = state;
            //任务完成、取消、异常等,则返回当前任务状态
            if (s > COMPLETING) {
                if (q != null)
                    q.thread = null;
                return s;
            }
            else if (s == COMPLETING) // cannot time out yet
                //让出cpu,使当前线程从运行状态变成就绪状态,和其它线程一同竞争cpu
                Thread.yield();
            else if (q == null)
                //创建等待节点
                q = new WaitNode();
            else if (!queued)
                //cas操作更新waiters的头节点为q, 完成入队
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset,
                                                     q.next = waiters, q);
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    //到了设置的超时时间,则移除等待队列
                    removeWaiter(q);
                    return state;
                }
                //阻塞nacos纳秒数
                LockSupport.parkNanos(this, nanos);
            }
            else
                //阻塞,等待唤醒
                LockSupport.park(this);
        }
    }

private V report(int s) throws ExecutionException {
        //此处x的值就是前面set方法赋值的outcome值
        Object x = outcome;
        if (s == NORMAL)
            return (V)x;
        if (s >= CANCELLED)
            throw new CancellationException();
        throw new ExecutionException((Throwable)x);
    }

总结:

到这里Future类分析完了,基本通过这个例子可看到整个的执行流程,比如创建了FutureTask对像、创建了线程执行任务、控制状态的存储、怎么完成的回调等等。

 

 

 

 

 

你可能感兴趣的:(JDK源码)