- 使用 PyTorch 从头开始构建您自己的 Llama 3 架构
子然在打码
pytorchllama人工智能
https://www.aisolink.com/build-your-own-llama-3-architecture-from-scratch-using-pytorch全文摘要本文提供了一个详细的指南,介绍如何使用PyTorch从头开始构建Llama3模型的完整架构,并对自定义数据集进行训练和推理。文章涵盖了构建输入块、解码器块和输出块的步骤,并提供了相应的代码示例。最终目标是构建一个功能齐
- ZYNQ + Linux
jerwey
linuxzynq
ZYNQLinux操作系统移植说明文档http://xilinx.eetrend.com/content/2019/100018437.html1,组成ZYNQ上面移植Linux操作系统包括四个部分,uboot,devicetree,kernel,ramdisk.其中uboot类似于bios,负责对设备进行简单的初始化,devicetree以树的形式对zynq相连的硬件设备进行描述,kernel是
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- 深入浅出的聊聊 Agent
程序员鑫港
人工智能数据库知识图谱深度学习机器学习
今天,我想和你一起聊聊Agent(智能体),从它的起源、特点,到关键的知识点,以及现实中的应用和实现原理。希望能帮助你更深入地了解这个既有趣又重要的领域。前排提示,文末有大模型AGI-CSDN独家资料包哦!一、Agent的起源1.什么是Agent你可能会问,Agent到底是什么呢?简单来说,Agent就是能够在一定环境中自主感知、决策和行动的实体。它可以是一个软件程序、一个机器人,甚至是一个复杂的
- 交换机与路由器的区别
黑石云
边缘计算
交换机和路由器是网络中的两种关键设备,它们各自承担不同的功能,主要区别体现在以下几个方面:一、工作层次与功能交换机:工作层次:交换机主要工作在OSI模型的第二层,即数据链路层。功能:交换机用于在局域网(LAN)内的不同设备之间进行数据的转发和交换。它通过学习和转发数据帧的方式来实现多个设备之间的通信,能够根据数据包的MAC地址进行数据的无冲突传输,提高网络传输的效率和稳定性。路由器:工作层次:路由
- 【LLM】Ollama:本地大模型 WebAPI 调用
T0uken
python开发语言
Ollama快速部署安装Docker:从Docker官网下载并安装。部署Ollama:使用以下命令进行部署:dockerrun-d-p11434:11434--nameollama--restartalwaysollama/ollama:latest进入容器并下载qwen2.5:0.5b模型:进入Ollama容器:dockerexec-itollamabash在容器内下载模型:ollamapull
- 使用kubeadm搭建kubernetes单机master,亲测无异常(1)
2301_76238237
程序员kubernetes容器云原生
sudocat/sys/class/dmi/id/product_uuid//每台机器的uuid不能相同ifconfig-a//ip不能相同2.开放端口|协议|方向|端口范围|作用|使用者||—|—|—|—|—||TCP|入站|6443|KubernetesAPI服务器|所有组件||TCP|入站|2379-2380|etcd服务器客户端API|kube-apiserver,etcd||TCP|入站
- Redis架构
zyz176
Redis架构Redis是一个单线程的架构单线程和多线程:单线程效率低,安全多线程效率高,有线程安全问题简化了数据结构和算法的实现:Redis采用了事件模型的机制I/O多路复用机制(Linux处理文件读取的机制)单线程异步回调:node.jsRedis是一个单线程,为什么效率还这么高?redis是基于内存的,他的读取速度本身就很快使用单线程,避免了cpu对线程的切换,在一点程度上提高了效率redi
- YOLOv10改进,YOLOv10改进主干网络为GhostNetV3(2024年华为的轻量化架构,全网首发),助力涨点
挂科边缘
YOLOv10改进YOLO计算机视觉目标检测人工智能python深度学习
摘要GhostNetV3是由华为诺亚方舟实验室的团队发布的,于2024年4月发布。摘要:紧凑型神经网络专为边缘设备上的应用设计,具备更快的推理速度,但性能相对适中。然而,紧凑型模型的训练策略目前借鉴自传统模型,这忽略了它们在模型容量上的差异,可能阻碍紧凑型模型的性能提升。在本文中,通过系统地研究不同训练成分的影响,我们介绍了一种用于紧凑型模型的强大训练策略。我们发现,适当的重参数化和知识蒸馏设计对
- OpenBayes 一周速览|微软 Phi-4 发布,降低更多成本实现高效推理;Terra 时空数据集上线
公共资源速递5个数据集:Terra多模态时空数据集ChineseCouplets中文对联数据集AqueousSolubility无机化合物数据集HumanLikeDPODataset大模型对话微调数据集SentimentandEmotionAnalysisDataset情感情绪分析数据集4个教程:一键部署Phi-4Docling:文档解析神器一键部署QVQ-72B-preview铅笔素描风格文生图
- 2024年AI浪潮:基础设施重构、模型演进与挑战并存
前端
2024年,人工智能领域呈现出蓬勃发展的景象,投资持续增长、基础设施发生变革,技术应用加速落地。各大科技公司和初创企业纷纷涌入,试图在这一充满机遇的领域分一杯羹。本文将深入探讨2024年AI发展的三大核心趋势:AI基础设施的重构、模型发展的新趋势以及AI发展带来的挑战,并重点关注企业如何从AI投资中获得回报,以及AI智能体技术的巨大潜力。选择合适的AI代码生成器将成为企业提升效率的关键。AI基础设
- 使用多模态大模型转换 office 文档
人工智能图像识别
背景介绍随着大模型的技术的不断发展,如何将各种office文档转换为markdown成为了一个刚需,包括微软在内的不少公司都给出了解决方案,但是都需要经过繁琐的步骤再本地或云端进行部署,有的对本地还有一定算力要求。现在各家的多模态大模型都在不断降价,1块钱都能处理几百张图片,不少提供商还每日提供免费额度,所以使用多模态大模型转换office文档成为一个廉价而简单的解决方案。技术方案这里介绍的是使用
- 「AI 中国」榜单揭晓,OpenBayes贝式计算入选「大模型最具潜力创业企业 TOP 10」
日前,「AI中国」机器之心2024年度评选正式揭晓,OpenBayes贝式计算有幸入选「大模型最具潜力创业企业TOP10」。作为专业的人工智能媒体与产业服务平台,机器之心于2017年发布了AI榜单「SyncedMachineIntelligenceAwards」,在随后的时间里,伴随AI的跨越式发展,机器之心的年度评选也逐渐成为了产业风向标之一,覆盖的领域、范围更加广泛,维度更加细化。机器之心20
- FORCE 原动力大会|火山引擎边缘云亮点干货先知晓!
人工智能边缘计算机器人
AI技术战场上,唯快不破?在经历了早期的热闹之后,AI大模型的能力和价值维度已经不再浮于表面。IDC最新发布的《中国智算服务市场(2023下半年)跟踪》报告显示,受国内生成式AI技术飞速发展的影响,GenAI(生成式AI)IaaS市场在2023年实现爆发式增长,在AI+云计算领域有双向积累的公司获得先发优势。火山引擎一跃成为GenAIIaaS领域市场份额最大的云厂商。只有真正实现大模型的深度融合,
- React 19新特性探索:提升性能与开发者体验
程序员
React作为最受欢迎的JavaScript库之一,不断推出新版本以应对日益复杂的应用需求。React19作为最新的版本,引入了一系列令人兴奋的新特性和改进,旨在进一步提升应用的性能、开发效率和用户体验。本文将深入探讨React19的新特性,包括异步操作管理、文档元数据和样式表支持、ServerComponents与服务器端渲染等,帮助开发者更好地理解和利用这些新特性来构建更强大、更高效的Reac
- 探索AI API版本管理与流式传输实现
qwe54165a4wd
人工智能java数据库python
在现代软件开发中,API版本管理是一个关键的主题,尤其是在涉及到AIAPI的场景。API版本的变更会影响到服务的稳定性和功能的兼容性。因此,理解API版本管理的基本原理和具体实现,对于开发者来说至关重要。技术背景介绍API版本管理涉及到如何在不破坏现有客户端代码的情况下,逐步引入新的功能和改进。这对于AI服务尤为重要,因为AI模型和算法的更新频率相对较高。本文将重点介绍AIAPI版本的管理原则,并
- OpenBayes 一周速览|一键部署Qwen2.5-Coder,0编程经验实现代码生成自由!
公共资源速递5个数据集:Coil-100图像数据集Muharaf手写阿拉伯文数据集CollectiveActivity集体活动视频数据集MultimodalSpectroscopic化学多模光谱数据集CDFSOD-benchmark跨域小样本对象检测基准数据集3个教程:一键部署Qwen2.5-CoderInkSight将手写文字数字化DemoGLM-4-Voice端到端中英语音对话模型访问官网立即
- 论文阅读:Deep Bilateral Learning for Real-Time Image Enhancement-google-hdrnet-slicing
SetMaker
论文阅读
项目地址:https://gitcode.com/google/hdrnethdrnet作为超分领域的经典文章,由google提出主要用来用轻量化的方法来实现高分辨率的图像生成,hdrnet结合cnn可以让更高分辨率的图像部署在板端。如图所示,原始图像比如4k图像,首先分为两个主要模块:grid和guide。grid就是对应图上面的那一条特征提取网络,具体来说,原始图像经过下采样之后,默认256分
- 6、ListView详解:构建可滚动的列表
piplab666
flutterui
在移动应用开发中,经常需要展示大量数据,如新闻列表、商品列表等。Flutter提供了丰富的滚动视图控件,其中最基础也是最常用的就是ListView。本篇博客将深入探讨ListView的各种属性、类型以及性能优化技巧,帮助您更好地利用这一重要工具。1.什么是ListView?ListView是Flutter中的滚动视图控件,用于展示一个可滚动的列表。它可以在垂直方向(默认)或水平方向滚动,内部包含一
- 云原生主键模型:高效、弹性,省钱又省心
数据库大数据
作者简介:罗一鑫,StarRocksCommitter,主要负责存储引擎相关的工作。导读:在StarRocks3.3.1版本中,我们推出了云原生持久化索引,旨在解决本地磁盘持久化索引的关键问题。本文将详细探讨其优势,并对比云原生与本地磁盘持久化索引在大批量导入、小批实时导入以及弹性调度等场景中的表现。尤其在弹性调度场景中,云原生架构使延迟性能提升至本地磁盘的10倍。主键模型是StarRocks全新
- 企业落地大模型的路径选择:微调、RAG、提示词工程
AGI-杠哥
深度学习自然语言处理人工智能学习知识图谱
一、大模型的特点1)不确定性与传统应用不同,模型的输出是不确定的,即使多次问它一样的问题,给出的结果也可能不一样。这种特性对于日常应用业务OK,但是如果要在企业内用来处理具体业务问题,就必须提高这个稳定性,否则影响生产经营,例如产线操作人员通过模型获取操作步骤或者参数,如果步骤或者数据不对可能会导致产品出现质量问题等等。2)静态性模型一旦训练好,就无法再补充数据,因此模型不会了解你自己组织内部的年
- ChatGPT 绘图的工作原理
ChatGPT的绘图功能结合了自然语言处理(NLP)和图像生成的技术,这种综合能力依赖于预训练模型(如GPT-4)和图像生成模型(如DALL-E)之间的紧密协作。ChatGPT本质上是一个大规模的语言模型,但通过与图像生成模型集成,它得以执行基于描述生成图像的任务。接下来,我们将从模型架构、训练方法、推理机制和一些技术挑战等方面,详细讨论ChatGPT进行绘图的工作原理。
- Unity文件路径访问总结:从基础到高级的资源加载方法
Unity青子
Unity零基础系列课程unity
在Unity开发中,文件路径的访问和资源加载是开发者经常需要处理的任务。无论是加载纹理、模型、音频,还是读取配置文件,正确地处理路径和资源加载是确保项目顺利运行的关键。本文将以Unity文件路径访问为主线,详细介绍Unity中常见的路径访问方式,并结合代码示例、注意事项以及实际使用场景,帮助开发者更好地理解和使用这些方法。同时,本文还会延伸出更多相关知识,帮助用户举一反三,解决实际开发中的问题。1
- 使用LangChain构建简单LLM翻译应用
fGVBSAbe
langchainjava前端python
技术背景介绍在本教程中,我们将学习如何使用LangChain构建一个简单的语言模型(LLM)应用程序,该应用程序用于将文本从英语翻译成其他语言。虽然这个应用程序比较简单,但它是学习LangChain的一个不错的开始,因为许多复杂功能都可以通过简单的提示和LLM调用构建。核心原理解析LangChain通过链式调用多个组件,使得复杂的语言处理任务变得简单易行。我们将使用LangChain的以下功能:语
- 021:为什么是卷积呢?
董董灿是个攻城狮
计算机视觉保姆级教程人工智能计算机视觉CNN
本文为合集收录,欢迎查看合集/专栏链接进行全部合集的系统学习。合集完整版请查看这里。卷积算法非常重要,但是为什么是卷积呢?在进一步学习之前,先看一看神经网络(或者叫一个AI模型)是如何完成一张图片的推理的。你肯定听说过阿尔法狗大战柯洁的故事,当时新闻一出,不知大家什么反应,反正我是被震撼到了:AI模型竟然学到了那么多的棋谱,而且人类在AI的面前毫无还手可言。但是,你有没有想过一个问题:阿尔法狗学会
- AI Agent的技术选型:从个人项目到企业级应用
人工智能机器学习
说实话,每次有人问我"开发AIAgent应该用什么技术栈?",我都觉得挺难回答的。因为不同的场景,最佳的技术选择可能完全不同。今天就来聊聊我在不同项目中的技术选型经历,希望能给大家一些参考。从个人项目说起去年我开始研究AIAgent的时候,第一个练手项目是给自己做一个代码助手。需求很简单:能读懂我的项目代码,帮我重构和写测试。那时候,我的技术选型是这样的:模型选择:OpenAIGPT-3.5便宜,
- OpenAI进军实体机器人:GPT赋能的智能未来
前端
近年来,人工智能技术飞速发展,深刻地改变着我们的生活。而OpenAI作为人工智能领域的领军者,其最新动作更是引人注目:进军实体机器人领域!这不仅标志着人工智能技术应用场景的重大拓展,也预示着未来智能机器人时代的加速到来。本文将深入探讨OpenAI的实体机器人战略,分析其背后的深层逻辑,并展望其未来发展趋势与挑战。OpenAI的战略布局:从AI模型到实体机器人OpenAI在人工智能领域已取得了令人瞩
- OpenBayes 一周速览|微软 Phi-4 发布,降低更多成本实现高效推理;Terra 时空数据集上线
公共资源速递5个数据集:Terra多模态时空数据集ChineseCouplets中文对联数据集AqueousSolubility无机化合物数据集HumanLikeDPODataset大模型对话微调数据集SentimentandEmotionAnalysisDataset情感情绪分析数据集4个教程:一键部署Phi-4Docling:文档解析神器一键部署QVQ-72B-preview铅笔素描风格文生图
- Flutter ListView进阶:如何实现根据索引值滚动到列表特定位置
md_1008
flutterjavascript前端
在Flutter开发中,ListView是一个非常常用的组件,它允许我们展示一系列的项目。然而,有时候我们需要根据特定的索引值滚动到ListView中的某个项目位置,以便提供更好的用户体验。本文将详细介绍如何在Flutter中实现这一功能。一、基础准备首先,我们需要确保我们的ListView是可滚动的。在Flutter中,常用的可滚动ListView包括ListView、ListView.buil
- 基于WebService的面向服务架构研究
huaqianzkh
软件架构设计架构
摘要随着信息技术的快速发展,企业信息化已成为提升竞争力的关键手段。然而,企业在信息化过程中,往往形成了多个独立的业务系统,这些系统之间的信息交互困难,形成了“信息孤岛”。为了解决这个问题,基于WebService的面向服务架构(SOA)应运而生。本文首先介绍了WebService技术和SOA的基本概念,然后详细阐述了基于WebService的SOA架构的设计和实现方法,并通过一个具体案例展示了该架
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多