STL(Standard Template Library),即标准模板库,是一个具有工业强度的,高效的C++程序库。它被容纳于C++标准程序库(C++ Standard Library)中,是ANSI/ISO C++标准中最新的也是极具革命性的一部分。该库包含了诸多在计算机科学领域里所常用的基本数据结构和基本算法。为广大C++程序员们提供了一个可扩展的应用框架,高度体现了软件的可复用性。
STL的一个重要特点是数据结构和算法的分离
。尽管这是个简单的概念,但这种分离确实使得STL变得非常通用。例如,由于STL的sort()函数是完全通用的,你可以用它来操作几乎任何数据集合,包括链表,容器和数组;
STL另一个重要特性是它不是面向对象的
。为了具有足够通用性,STL主要依赖于模板而不是封装,继承和虚函数(多态性)——OOP的三个要素。你在STL中找不到任何明显的类继承关系。这好像是一种倒退,但这正好是使得STL的组件具有广泛通用性的底层特征。另外,由于STL是基于模板,内联函数的使用使得生成的代码短小高效;
从逻辑层次来看,在STL中体现了泛型化程序设计的思想,引入了诸多新的名词,比如像需求(requirements),概念(concept),模型(model),容器(container),算法(algorithmn),迭代子(iterator)等。与OOP(object-oriented programming)中的多态(polymorphism)一样,泛型也是一种软件的复用技术;
从实现层次看,整个STL是以一种类型参数化的方式实现的,这种方式基于一个在早先C++标准中没有出现的语言特性–模板(template)。
STL中六大组件:
STL中的容器有队列容器和关联容器,容器适配器(congtainer adapters:stack,queue,priority queue),位集(bit_set),串包(string_package)等等。
(1)序列式容器(Sequence containers),每个元素都有固定位置--取决于插入时机和地点,和元素值无关,vector、deque、list;
Vector
:将元素置于一个动态数组中加以管理,可以随机存取元素(用索引直接存取),数组尾部添加或移除元素非常快速。但是在中部或头部安插元素比较费时;
Deque
:是“double-ended queue”的缩写,可以随机存取元素(用索引直接存取),数组头部和尾部添加或移除元素都非常快速。但是在中部或头部安插元素比较费时;
List
:双向链表,不提供随机存取(按顺序走到需存取的元素,O(n)),在任何位置上执行插入或删除动作都非常迅速,内部只需调整一下指针;
(2)关联式容器(Associated containers),元素位置取决于特定的排序准则,和插入顺序无关,set、multiset、map、multimap等。
Set/Multiset
:内部的元素依据其值自动排序,Set内的相同数值的元素只能出现一次,Multisets内可包含多个数值相同的元素,内部由二叉树实现,便于查找;
Map/Multimap
:Map的元素是成对的键值/实值,内部的元素依据其值自动排序,Map内的相同数值的元素只能出现一次,Multimaps内可包含多个数值相同的元素,内部由二叉树实现,便于查找;
容器类自动申请和释放内存,无需new和delete操作。
Iterator(迭代器)模式又称Cursor(游标)模式,用于提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。或者这样说可能更容易理解:Iterator模式是运用于聚合对象的一种模式,通过运用该模式,使得我们可以在不知道对象内部表示的情况下,按照一定顺序(由iterator提供的方法)访问聚合对象中的各个元素。
迭代器的作用:能够让迭代器与算法不干扰的相互发展,最后又能无间隙的粘合起来,重载了*,++,==,!=,=运算符。用以操作复杂的数据结构,容器提供迭代器,算法使用迭代器;常见的一些迭代器类型:iterator、const_iterator、reverse_iterator和const_reverse_iterator.
函数库对数据类型的选择对其可重用性起着至关重要的作用。举例来说,一个求方根的函数,在使用浮点数作为其参数类型的情况下的可重用性肯定比使用整型作为它的参数类性要高。而C++通过模板的机制允许推迟对某些类型的选择,直到真正想使用模板或者说对模板进行特化的时候,STL就利用了这一点提供了相当多的有用算法。它是在一个有效的框架中完成这些算法的——你可以将所有的类型划分为少数的几类,然后就可以在模版的参数中使用一种类型替换掉同一种类中的其他类型。
STL提供了大约100个实现算法的模版函数,比如算法for_each将为指定序列中的每一个元素调用指定的函数,stable_sort以你所指定的规则对序列进行稳定性排序等等。只要我们熟悉了STL之后,许多代码可以被大大的化简,只需要通过调用一两个算法模板,就可以完成所需要的功能并大大地提升效率。
算法部分主要由头文件<algorithm>,<numeric>和<functional>组成。
是所有STL头文件中最大的一个(尽管它很好理解),它是由一大堆模版函数组成的,可以认为每个函数在很大程度上都是独立的,其中常用到的功能范围涉及到比较、交换、查找、遍历操作、复制、修改、移除、反转、排序、合并等等。
体积很小,只包括几个在序列上面进行简单数学运算的模板函数,包括加法和乘法在序列上的一些操作。
中则定义了一些模板类,用以声明函数对象。
STL中算法大致分为四类:
<一>查找算法(13个)
:判断容器中是否包含某个值
2.4.1 概述
仿函数(functor),就是使一个类的使用看上去象一个函数。其实现就是类中实现一个operator(),这个类就有了类似函数的行为,就是一个仿函数类了。
有些功能的的代码,会在不同的成员函数中用到,想复用这些代码。
1)公共的函数,可以,这是一个解决方法,不过函数用到的一些变量,就可能成为公共的全局变量,再说为了复用这么一片代码,就要单立出一个函数,也不是很好维护。
2)仿函数,写一个简单类,除了那些维护一个类的成员函数外,就只是实现一个operator(),在类实例化时,就将要用的,非参数的元素传入类中。
1)C语言使用函数指针和回调函数来实现仿函数,例如一个用来排序的函数可以这样使用仿函数
#include
#include
//int sort_function( const void *a, const void *b);
int sort_function( const void *a, const void *b)
{
return *(int*)a-*(int*)b;
}
int main()
{
int list[5] = {
54, 21, 11, 67, 22 };
qsort((void *)list, 5, sizeof(list[0]), sort_function);//起始地址,个数,元素大小,回调函数
int x;
for (x = 0; x < 5; x++)
printf("%i\n", list[x]);
return 0;
}
2)在C++里,我们通过在一个类中重载括号运算符的方法使用一个函数对象而不是一个普通函数。
#include
#include
using namespace std;
template<typename T>
class display
{
public:
void operator()(const T &x)
{
cout << x << " ";
}
};
int main()
{
int ia[] = {
1,2,3,4,5 };
for_each(ia, ia + 5, display<int>());
system("pause");
return 0;
}
要使用STL内建的仿函数,必须包含头文件。而头文件中包含的仿函数分类包括
1)算术类仿函数
加:plus
减:minus
乘:multiplies
除:divides
模取:modulus
否定:negate
例子:
#include
#include
#include
#include
using namespace std;
int main()
{
int ia[] = {
1,2,3,4,5 };
vector<int> iv(ia, ia + 5);
//120
cout << accumulate(iv.begin(), iv.end(), 1, multiplies<int>()) << endl;
//15
cout << multiplies<int>()(3, 5) << endl;
modulus<int> modulusObj;
cout << modulusObj(3, 5) << endl; // 3
system("pause");
return 0;
}
2)关系运算类仿函数
等于:equal_to
不等于:not_equal_to
大于:greater
大于等于:greater_equal
小于:less
小于等于:less_equal
从大到小排序:
#include
#include
#include
#include
using namespace std;
template <class T>
class display
{
public:
void operator()(const T &x)
{
cout << x << " ";
}
};
int main()
{
int ia[] = {
1,5,4,3,2 };
vector<int> iv(ia, ia + 5);
sort(iv.begin(), iv.end(), greater<int>());
for_each(iv.begin(), iv.end(), display<int>());
system("pause");
return 0;
}
3)逻辑运算仿函数
逻辑与:logical_and
逻辑或:logical_or
逻辑否:logical_no
除了使用STL内建的仿函数,还可使用自定义的仿函数,具体实例见文章3.4.7.2小结
标准库提供了三种顺序容器适配器:queue(FIFO队列)、priority_queue(优先级队列)、stack(栈)
什么是容器适配器
”适配器是使一种事物的行为类似于另外一种事物行为的一种机制”,适配器对容器进行包装,使其表现出另外一种行为。例 如,stack
容器适配器
要使用适配器,需要加入一下头文件:
#include //stack
#include //queue、priority_queue
种类 默认顺序容器 可用顺序容器 说明
stack deque vector、list、deque
queue deque list、deque 基础容器必须提供push_front()运算
priority_queue vector vector、deque 基础容器必须提供随机访问功能
定义适配器
1、初始化
stack stk(dep);
2、覆盖默认容器类型
stack > stk;
stack<int> s;
stack< int, vector<int> > stk; //覆盖基础容器类型,使用vector实现stk
s.empty(); //判断stack是否为空,为空返回true,否则返回false
s.size(); //返回stack中元素的个数
s.pop(); //删除栈顶元素,但不返回其值
s.top(); //返回栈顶元素的值,但不删除此元素
s.push(item); //在栈顶压入新元素item
实例:括号匹配
#include
#include
#include
#include
using namespace std;
int main()
{
string s;
stack<char> ss;
while (cin >> s)
{
bool flag = true;
for (char c : s) //C++11新标准,即遍历一次字符串s
{
if (c == '(' || c == '{' || c == '[')
{
ss.push(c);
continue;
}
if (c == '}')
{
if (!ss.empty() && ss.top() == '{')
{
ss.pop();
continue;
}
else
{
flag = false;
break;
}
}
if (!ss.empty() && c == ']')
{
if (ss.top() == '[')
{
ss.pop();
continue;
}
else
{
flag = false;
break;
}
}
if (!ss.empty() && c == ')')
{
if (ss.top() == '(')
{
ss.pop();
continue;
}
else
{
flag = false;
break;
}
}
}
if (flag) cout << "Match!" << endl;
else cout << "Not Match!" << endl;
}
}
queue<int> q; //priority_queue q;
q.empty(); //判断队列是否为空
q.size(); //返回队列长度
q.push(item); //对于queue,在队尾压入一个新元素
//对于priority_queue,在基于优先级的适当位置插入新元素
//queue only:
q.front(); //返回队首元素的值,但不删除该元素
q.back(); //返回队尾元素的值,但不删除该元素
//priority_queue only:
q.top(); //返回具有最高优先级的元素值,但不删除该元素
3.1 vector
3.1.1 基本函数实现
1.构造函数
8.看着清楚
1.push_back 在数组的最后添加一个数据
2.pop_back 去掉数组的最后一个数据
3.at 得到编号位置的数据
4.begin 得到数组头的指针
5.end 得到数组的最后一个单元+1的指针
6.front 得到数组头的引用
7.back 得到数组的最后一个单元的引用
8.max_size 得到vector最大可以是多大
9.capacity 当前vector分配的大小
10.size 当前使用数据的大小
11.resize 改变当前使用数据的大小,如果它比当前使用的大,者填充默认值
12.reserve 改变当前vecotr所分配空间的大小
13.erase 删除指针指向的数据项
14.clear 清空当前的vector
15.rbegin 将vector反转后的开始指针返回(其实就是原来的end-1)
16.rend 将vector反转构的结束指针返回(其实就是原来的begin-1)
17.empty 判断vector是否为空
18.swap 与另一个vector交换数据
#include < vector>
using namespace std;
3.1.3 简单介绍
3.1.4.1 pop_back()&push_back(elem)实例在容器最后移除和插入数据
#include
#include
#include
using namespace std;
int main()
{
vector<int>obj;//创建一个向量存储容器 int
for(int i=0;i<10;i++) // push_back(elem)在数组最后添加数据
{
obj.push_back(i);
cout<<obj[i]<<",";
}
for(int i=0;i<5;i++)//去掉数组最后一个数据
{
obj.pop_back();
}
cout<<"\n"<<endl;
for(int i=0;i<obj.size();i++)//size()容器中实际数据个数
{
cout<<obj[i]<<",";
}
return 0;
}
输出结果为:
0,1,2,3,4,5,6,7,8,9,
0,1,2,3,4,
3.1.4.2 clear()清除容器中所有数据
#include
#include
#include
using namespace std;
int main()
{
vector<int>obj;`在这里插入代码片`
for(int i=0;i<10;i++)//push_back(elem)在数组最后添加数据
{
obj.push_back(i);
cout<<obj[i]<<",";
}
obj.clear();//清除容器中所以数据
for(int i=0;i<obj.size();i++)
{
cout<<obj[i]<<endl;
}
return 0;
}
输出结果为:
0,1,2,3,4,5,6,7,8,9,
3.1.4.3 排序
#include
#include
#include
#include
using namespace std;
int main()
{
vector<int>obj;
obj.push_back(1);
obj.push_back(3);
obj.push_back(0);
sort(obj.begin(),obj.end());//从小到大
cout<<"从小到大:"<<endl;
for(int i=0;i<obj.size();i++)
{
cout<<obj[i]<<",";
}
cout<<"\n"<<endl;
cout<<"从大到小:"<<endl;
reverse(obj.begin(),obj.end());//从大到小
for(int i=0;i<obj.size();i++)
{
cout<<obj[i]<<",";
}
return 0;
}
输出结果为:
从小到大:
0,1,3,
从大到小:
3,1,0,
1.注意 sort 需要头文件 #include
2.如果想 sort 来降序,可重写 sort
bool compare(int a,int b)
{
return a< b; //升序排列,如果改为return a>b,则为降序
}
int a[20]={
2,4,1,23,5,76,0,43,24,65},i;
for(i=0;i<20;i++)
cout<< a[i]<< endl;
sort(a,a+20,compare);
3.1.4.4 访问(直接数组访问&迭代器访问)
#include
#include
#include
#include
using namespace std;
int main()
{
//顺序访问
vector<int>obj;
for(int i=0;i<10;i++)
{
obj.push_back(i);
}
cout<<"直接利用数组:";
for(int i=0;i<10;i++)//方法一
{
cout<<obj[i]<<" ";
}
cout<<endl;
cout<<"利用迭代器:" ;
//方法二,使用迭代器将容器中数据输出
vector<int>::iterator it;//声明一个迭代器,来访问vector容器,作用:遍历或者指向vector容器的元素
for(it=obj.begin();it!=obj.end();it++)
{
cout<<*it<<" ";
}
return 0;
}
输出结果为:
直接利用数组:0 1 2 3 4 5 6 7 8 9
利用迭代器:0 1 2 3 4 5 6 7 8 9
3.1.4.5 二维数组两种定义方法(结果一样)
方法一
#include
#include
#include
#include
using namespace std;
int main()
{
int N=5, M=6;
vector<vector<int> > obj(N); //定义二维动态数组大小5行
for(int i =0; i< obj.size(); i++)//动态二维数组为5行6列,值全为0
{
obj[i].resize(M);
}
for(int i=0; i< obj.size(); i++)//输出二维动态数组
{
for(int j=0;j<obj[i].size();j++)
{
cout<<obj[i][j]<<" ";
}
cout<<"\n";
}
return 0;
}
方法二
#include
#include
#include
#include
using namespace std;
int main()
{
int N=5, M=6;
vector<vector<int> > obj(N, vector<int>(M)); //定义二维动态数组5行6列
for(int i=0; i< obj.size(); i++)//输出二维动态数组
{
for(int j=0;j<obj[i].size();j++)
{
cout<<obj[i][j]<<" ";
}
cout<<"\n";
}
return 0;
}
输出结果为:
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
所谓的deque是”double ended queue”的缩写,双端队列不论在尾部或头部插入元素,都十分迅速。而在中间插入元素则会比较费时,因为必须移动中间其他的元素。双端队列是一种随机访问的数据类型,提供了在序列两端快速插入和删除操作的功能,它可以在需要的时候改变自身大小,完成了标准的C++数据结构中队列的所有功能。
Vector是单向开口的连续线性空间,deque则是一种双向开口的连续线性空间。deque对象在队列的两端放置元素和删除元素是高效的,而向量vector只是在插入序列的末尾时操作才是高效的。deque和vector的最大差异,一在于deque允许于常数时间内对头端进行元素的插入或移除操作,二在于deque没有所谓的capacity观念,因为它是动态地以分段连续空间组合而成,随时可以增加一段新的空间并链接起来。换句话说,像vector那样“因旧空间不足而重新配置一块更大空间,然后复制元素,再释放旧空间”这样的事情在deque中是不会发生的。也因此,deque没有必要提供所谓的空间预留(reserved)功能。
虽然deque也提供Random Access Iterator,但它的迭代器并不是普通指针,其复杂度和vector不可同日而语,这当然涉及到各个运算层面。因此,除非必要,我们应尽可能选择使用vector而非deque。对deque进行的排序操作,为了最高效率,可将deque先完整复制到一个vector身上,将vector排序后(利用STL的sort算法),再复制回deque。
deque是一种优化了的对序列两端元素进行添加和删除操作的基本序列容器。通常由一些独立的区块组成,第一区块朝某方向扩展,最后一个区块朝另一方向扩展。它允许较为快速地随机访问但它不像vector一样把所有对象保存在一个连续的内存块,而是多个连续的内存块。并且在一个映射结构中保存对这些块以及顺序的跟踪。
3.2.1 声明deque容器
#include // 头文件
deque<type> deq; // 声明一个元素类型为type的双端队列que
deque<type> deq(size); // 声明一个类型为type、含有size个默认值初始化元素的的双端队列que
deque<type> deq(size, value); // 声明一个元素类型为type、含有size个value元素的双端队列que
deque<type> deq(mydeque); // deq是mydeque的一个副本
deque<type> deq(first, last); // 使用迭代器first、last范围内的元素初始化deq
3.2.2 deque的常用成员函数
deque<int> deq;
1.支持随机访问,即支持[ ]以及at(),但是性能没有vector好。
2.可以在内部进行插入和删除操作,但性能不及list。
3.deque两端都能够快速插入和删除元素,而vector只能在尾端进行。
4.deque的元素存取和迭代器操作会稍微慢一些,因为deque的内部结构会多一个间接过程。
5.deque迭代器是特殊的智能指针,而不是一般指针,它需要在不同的区块之间跳转。
6.deque可以包含更多的元素,其max_size可能更大,因为不止使用一块内存。
7.deque不支持对容量和内存分配时机的控制。
8.在除了首尾两端的其他地方插入和删除元素,都将会导致指向deque元素的任何pointers、references、iterators失效。不过,deque的内存重分配优于vector,因为其内部结构显示不需要复制所有元素。
9.deque的内存区块不再被使用时,会被释放,deque的内存大小是可缩减的。不过,是不是这么做以及怎么做由实际操作版本定义。
10.deque不提供容量操作:capacity()和reverse(),但是vector可以。
#include
#include
#include
using namespace std;
int main(void)
{
int i;
int a[10] = {
0,1,2,3,4,5,6,7,8,9 };
deque<int> q;
for (i = 0; i <= 9; i++)
{
if (i % 2 == 0)
q.push_front(a[i]);
else
q.push_back(a[i]);
} /*此时队列里的内容是: {8,6,4,2,0,1,3,5,7,9}*/
q.pop_front();
printf("%d\n", q.front()); /*清除第一个元素后输出第一个(6)*/
q.pop_back();
printf("%d\n", q.back()); /*清除最后一个元素后输出最后一个(7)*/
deque<int>::iterator it;
for (it = q.begin(); it != q.end(); it++) {
cout << *it << '\t';
}
cout << endl;
system("pause");
return 0;
}
3.3.1 list定义
List是stl实现的双向链表,与向量(vectors)相比, 它允许快速的插入和删除,但是随机访问却比较慢。使用时需要添加头文件
#include
3.3.2 list定义和初始化
listlst1; //创建空list
list lst2(5); //创建含有5个元素的list
listlst3(3,2); //创建含有3个元素的list
listlst4(lst2); //使用lst2初始化lst4
listlst5(lst2.begin(),lst2.end()); //同lst4
3.3.3 list常用操作函数
Lst1.assign() 给list赋值
Lst1.back() 返回最后一个元素
Lst1.begin() 返回指向第一个元素的迭代器
Lst1.clear() 删除所有元素
Lst1.empty() 如果list是空的则返回true
Lst1.end() 返回末尾的迭代器
Lst1.erase() 删除一个元素
Lst1.front() 返回第一个元素
Lst1.get_allocator() 返回list的配置器
Lst1.insert() 插入一个元素到list中
Lst1.max_size() 返回list能容纳的最大元素数量
Lst1.merge() 合并两个list
Lst1.pop_back() 删除最后一个元素
Lst1.pop_front() 删除第一个元素
Lst1.push_back() 在list的末尾添加一个元素
Lst1.push_front() 在list的头部添加一个元素
Lst1.rbegin() 返回指向第一个元素的逆向迭代器
Lst1.remove() 从list删除元素
Lst1.remove_if() 按指定条件删除元素
Lst1.rend() 指向list末尾的逆向迭代器
Lst1.resize() 改变list的大小
Lst1.reverse() 把list的元素倒转
Lst1.size() 返回list中的元素个数
Lst1.sort() 给list排序
Lst1.splice() 合并两个list
Lst1.swap() 交换两个list
Lst1.unique() 删除list中相邻重复的元素
3.3.4.1 迭代器遍历list
for(list<int>::const_iteratoriter = lst1.begin();iter != lst1.end();iter++)
{
cout<<*iter;
}
cout<<endl;
3.3.4.2 综合实例1
#include
#include
#include
#include
using namespace std;
typedef list<int> LISTINT;
typedef list<int> LISTCHAR;
void main()
{
//用LISTINT创建一个list对象
LISTINT listOne;
//声明i为迭代器
LISTINT::iterator i;
listOne.push_front(3);
listOne.push_front(2);
listOne.push_front(1);
listOne.push_back(4);
listOne.push_back(5);
listOne.push_back(6);
cout << "listOne.begin()--- listOne.end():" << endl;
for (i = listOne.begin(); i != listOne.end(); ++i)
cout << *i << " ";
cout << endl;
LISTINT::reverse_iterator ir;
cout << "listOne.rbegin()---listOne.rend():" << endl;
for (ir = listOne.rbegin(); ir != listOne.rend(); ir++) {
cout << *ir << " ";
}
cout << endl;
int result = accumulate(listOne.begin(), listOne.end(), 0);
cout << "Sum=" << result << endl;
cout << "------------------" << endl;
//用LISTCHAR创建一个list对象
LISTCHAR listTwo;
//声明i为迭代器
LISTCHAR::iterator j;
listTwo.push_front('C');
listTwo.push_front('B');
listTwo.push_front('A');
listTwo.push_back('D');
listTwo.push_back('E');
listTwo.push_back('F');
cout << "listTwo.begin()---listTwo.end():" << endl;
for (j = listTwo.begin(); j != listTwo.end(); ++j)
cout << char(*j) << " ";
cout << endl;
j = max_element(listTwo.begin(), listTwo.end());
cout << "The maximum element in listTwo is: " << char(*j) << endl;
system("pause");
}
#include
#include
using namespace std;
typedef list<int> INTLIST;
//从前向后显示list队列的全部元素
void put_list(INTLIST list, char *name)
{
INTLIST::iterator plist;
cout << "The contents of " << name << " : ";
for (plist = list.begin(); plist != list.end(); plist++)
cout << *plist << " ";
cout << endl;
}
//测试list容器的功能
void main(void)
{
//list1对象初始为空
INTLIST list1;
INTLIST list2(5, 1);
INTLIST list3(list2.begin(), --list2.end());
//声明一个名为i的双向迭代器
INTLIST::iterator i;
put_list(list1, "list1");
put_list(list2, "list2");
put_list(list3, "list3");
list1.push_back(7);
list1.push_back(8);
cout << "list1.push_back(7) and list1.push_back(8):" << endl;
put_list(list1, "list1");
list1.push_front(6);
list1.push_front(5);
cout << "list1.push_front(6) and list1.push_front(5):" << endl;
put_list(list1, "list1");
list1.insert(++list1.begin(), 3, 9);
cout << "list1.insert(list1.begin()+1,3,9):" << endl;
put_list(list1, "list1");
//测试引用类函数
cout << "list1.front()=" << list1.front() << endl;
cout << "list1.back()=" << list1.back() << endl;
list1.pop_front();
list1.pop_back();
cout << "list1.pop_front() and list1.pop_back():" << endl;
put_list(list1, "list1");
list1.erase(++list1.begin());
cout << "list1.erase(++list1.begin()):" << endl;
put_list(list1, "list1");
list2.assign(8, 1);
cout << "list2.assign(8,1):" << endl;
put_list(list2, "list2");
cout << "list1.max_size(): " << list1.max_size() << endl;
cout << "list1.size(): " << list1.size() << endl;
cout << "list1.empty(): " << list1.empty() << endl;
put_list(list1, "list1");
put_list(list3, "list3");
cout << "list1>list3: " << (list1 > list3) << endl;
cout << "list1 << (list1 < list3) << endl;
list1.sort();
put_list(list1, "list1");
list1.splice(++list1.begin(), list3);
put_list(list1, "list1");
put_list(list3, "list3");
system("pause");
}
map和multimap都需要#include,唯一的不同是,map的键值key不可重复,而multimap可以,也正是由于这种区别,map支持[ ]运算符,multimap不支持[ ]运算符。在用法上没什么区别。
C++中map提供的是一种键值对容器,里面的数据都是成对出现的,如下图:每一对中的第一个值称之为关键字(key),每个关键字只能在map中出现一次;第二个称之为该关键字的对应值。
Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据 处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一 种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的。
begin() 返回指向map头部的迭代器
clear() 删除所有元素
count() 返回指定元素出现的次数
empty() 如果map为空则返回true
end() 返回指向map末尾的迭代器
equal_range() 返回特殊条目的迭代器对
erase() 删除一个元素
find() 查找一个元素
get_allocator() 返回map的配置器
insert() 插入元素
key_comp() 返回比较元素key的函数
lower_bound() 返回键值>=给定元素的第一个位置
max_size() 返回可以容纳的最大元素个数
rbegin() 返回一个指向map尾部的逆向迭代器
rend() 返回一个指向map头部的逆向迭代器
size() 返回map中元素的个数
swap() 交换两个map
upper_bound() 返回键值>给定元素的第一个位置
value_comp() 返回比较元素value的函数
//头文件
#include
map<int, string> ID_Name;
// 使用{}赋值是从c++11开始的,因此编译器版本过低时会报错,如visual studio 2012
map<int, string> ID_Name = {
{
2015, "Jim" },
{
2016, "Tom" },
{
2017, "Bob" } };
共有八个获取迭代器的函数:* begin, end, rbegin,rend* 以及对应的 * cbegin, cend, crbegin,crend*。
二者的区别在于,后者一定返回 const_iterator,而前者则根据map的类型返回iterator 或者 const_iterator。const情况下,不允许对值进行修改。如下面代码所示:
map<int,int>::iterator it;
map<int,int> mmap;
const map<int,int> const_mmap;
it = mmap.begin(); //iterator
mmap.cbegin(); //const_iterator
const_mmap.begin(); //const_iterator
const_mmap.cbegin(); //const_iterator
返回的迭代器可以进行加减操作,此外,如果map为空,则 begin = end。
3.4.4.1 用insert插入pair数据
//数据的插入--第一种:用insert函数插入pair数据
#include
#include
#include
using namespace std;
int main()
{
map<int, string> mapStudent;
mapStudent.insert(pair<int, string>(1, "student_one"));
mapStudent.insert(pair<int, string>(2, "student_two"));
mapStudent.insert(pair<int, string>(3, "student_three"));
map<int, string>::iterator iter;
for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)
cout<<iter->first<<' '<<iter->second<<endl;
}
**3.4.4.2 用insert函数插入value_type数据 **
//第二种:用insert函数插入value_type数据,下面举例说明
#include
#include
#include
using namespace std;
int main()
{
map<int, string> mapStudent;
mapStudent.insert(map<int, string>::value_type (1, "student_one"));
mapStudent.insert(map<int, string>::value_type (2, "student_two"));
mapStudent.insert(map<int, string>::value_type (3, "student_three"));
map<int, string>::iterator iter;
for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)
cout<<iter->first<<' '<<iter->second<<endl;
}
3.4.4.3 用insert函数进行多个插入
insert共有4个重载函数:
// 插入单个键值对,并返回插入位置和成功标志,插入位置已经存在值时,插入失败
pair<iterator,bool> insert (const value_type& val);
//在指定位置插入,在不同位置插入效率是不一样的,因为涉及到重排
iterator insert (const_iterator position, const value_type& val);
// 插入多个
void insert (InputIterator first, InputIterator last);
//c++11开始支持,使用列表插入多个
void insert (initializer_list<value_type> il);
下面是具体使用示例:
#include
#include
int main()
{
std::map<char, int> mymap;
// 插入单个值
mymap.insert(std::pair<char, int>('a', 100));
mymap.insert(std::pair<char, int>('z', 200));
//返回插入位置以及是否插入成功
std::pair<std::map<char, int>::iterator, bool> ret;
ret = mymap.insert(std::pair<char, int>('z', 500));
if (ret.second == false) {
std::cout << "element 'z' already existed";
std::cout << " with a value of " << ret.first->second << '\n';
}
//指定位置插入
std::map<char, int>::iterator it = mymap.begin();
mymap.insert(it, std::pair<char, int>('b', 300)); //效率更高
mymap.insert(it, std::pair<char, int>('c', 400)); //效率非最高
//范围多值插入
std::map<char, int> anothermap;
anothermap.insert(mymap.begin(), mymap.find('c'));
// 列表形式插入
anothermap.insert({
{
'd', 100 }, {
'e', 200} });
return 0;
}
3.4.4.4 用数组方式插入数据
//第三种:用数组方式插入数据,下面举例说明
#include
#include
#include
using namespace std;
int main()
{
map<int, string> mapStudent;
mapStudent[1] = "student_one";
mapStudent[2] = "student_two";
mapStudent[3] = "student_three";
map<int, string>::iterator iter;
for(iter = mapStudent.begin(); iter != mapStudent.end(); iter++)
cout<<iter->first<<' '<<iter->second<<endl;
}
以上三种用法,虽然都可以实现数据的插入,但是它们是有区别的,当然了第一种和第二种在效果上是完成一样的,用insert函数插入数据,在数据的 插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对 应的值,用程序说明
mapStudent.insert(map
mapStudent.insert(map
上面这两条语句执行后,map中1这个关键字对应的值是“student_one”,第二条语句并没有生效,那么这就涉及到我们怎么知道insert语句是否插入成功的问题了,可以用pair来获得是否插入成功,程序如下
pair
Insert_Pair = mapStudent.insert(map
我们通过pair的第二个变量来知道是否插入成功,它的第一个变量返回的是一个map的迭代器,如果插入成功的话Insert_Pair.second应该是true的,否则为false。
下面给出完成代码,演示插入成功与否问题
原文链接