蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛

蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛

之前准备省赛的时候用的是旧版的STM32F103,从准备国赛开始就用新版STM32G431平台了,主要是想经过新版的准备学习一下HAL库以及CubeMX的使用。用了几天的新版,感觉新版的还是比较香,单纯从配置各个模块来说,比旧版的省太多时间了,而且速度也比较块,单纯从比赛来说,还是推荐新版,因为配置方便,调试器兼容KEIL5,KEI5比KEIL4好用太多了,也有自动补全,在写代码的时候速度也会比较快一些。不过旧版的资料确实比较多,选择也看大家。所以之后的国赛赛题都是用的新版,当前除了模块的配置外,其他的代码其实都是一样的,没多大区别,所以旧版也是可以参考我的代码。

目录

  • 蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛
    • 一、赛题
    • 二、CubeMX模块配置
    • 三、主程序代码
    • 四、细节说明
    • 五、完整代码下载

一、赛题

怎么说呢,其实国赛的难度也不是很大,只是多用到了几个模块而已,十一届的国赛难度就和省赛的差不多,可能还没有前面某几届的省赛的难度高。
这一届的赛题主要考察了ADC、定时器的输入捕获、PWM的输出。 建议一定要掌握定时器的输出翻转模式,学会使用输出翻转模式输出频率和占空比都可变得PWM波, 比赛中都可以用这种方法搞定所有的PWM的考点。
蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第1张图片
蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第2张图片
蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第3张图片
蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第4张图片

二、CubeMX模块配置

  1. ADC的配置
    蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第5张图片
    蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第6张图片
    蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第7张图片

  2. 输入捕获的配置
    蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第8张图片
    在这里插入图片描述
    3.PWM配置
    蓝桥杯嵌入式——第十一届蓝桥杯嵌入式国赛_第9张图片
    在这里插入图片描述

三、主程序代码

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * 

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */
/* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define DATA 0 #define SETTING 1 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc2; DMA_HandleTypeDef hdma_adc2; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; TIM_HandleTypeDef htim4; /* USER CODE BEGIN PV */ uint16_t adc_value[2]; uint8_t key_tick = 0; _Bool interface = DATA; float v1 = 0.1; float v2 = 0.2; uint16_t f1 = 2030; uint16_t f2 = 300; uint8_t vd = 0; uint8_t fd = 1; uint8_t vd_temp = 1; uint8_t fd_temp = 2; uint8_t lcd_str[20]; _Bool select = 0; __IO uint16_t TIM2_IC3_ReadValue1 = 0, TIM2_IC3_ReadValue2 = 0; __IO uint16_t TIM2_IC3_CaptureNumber = 0; __IO uint32_t TIM2_IC3_Capture = 0; __IO uint32_t TIM2_IC3_Freq = 0; __IO uint16_t TIM2_IC2_ReadValue1 = 0, TIM2_IC2_ReadValue2 = 0; __IO uint16_t TIM2_IC2_CaptureNumber = 0; __IO uint32_t TIM2_IC2_Capture = 0; __IO uint32_t TIM2_IC2_Freq = 0; uint16_t CCR3_Val = 1000000 / 3000; uint16_t pwm_refresh_tick = 0; _Bool pwm_refresh_flag = 0; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_TIM4_Init(void); static void MX_ADC2_Init(void); static void MX_TIM2_Init(void); static void MX_TIM3_Init(void); /* USER CODE BEGIN PFP */ void led_proc(void); void lcd_proc(void); void key_scan(void); void adc_proc(void); void pwm_proc(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_TIM4_Init(); MX_ADC2_Init(); MX_TIM2_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start_IT(&htim4); HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_2); HAL_TIM_IC_Start_IT(&htim2,TIM_CHANNEL_3); HAL_TIM_OC_Start_IT(&htim3,TIM_CHANNEL_2); HAL_ADCEx_Calibration_Start(&hadc2,ADC_SINGLE_ENDED); HAL_ADC_Start_DMA(&hadc2,(uint32_t*)adc_value,2); led_init(); LCD_Init(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ LCD_Clear(Black); LCD_SetBackColor(Black); LCD_SetTextColor(White); LCD_DisplayStringLine(Line0, (uint8_t *)" "); while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ led_proc(); lcd_proc(); adc_proc(); pwm_proc(); } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = { 0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = { 0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = { 0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the CPU, AHB and APB busses clocks */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV3; RCC_OscInitStruct.PLL.PLLN = 20; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB busses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC12; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_SYSCLK; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_ChannelConfTypeDef sConfig = { 0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc2.Init.GainCompensation = 0; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = ENABLE; hadc2.Init.NbrOfConversion = 2; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.DMAContinuousRequests = ENABLE; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_17; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_13; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = { 0}; TIM_MasterConfigTypeDef sMasterConfig = { 0}; TIM_IC_InitTypeDef sConfigIC = { 0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 80 - 1; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 4.294967295E9; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_IC_Init(&htim2) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigIC.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING; sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI; sConfigIC.ICPrescaler = TIM_ICPSC_DIV1; sConfigIC.ICFilter = 0; if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } if (HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = { 0}; TIM_MasterConfigTypeDef sMasterConfig = { 0}; TIM_OC_InitTypeDef sConfigOC = { 0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 80 - 1; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 65535; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } if (HAL_TIM_OC_Init(&htim3) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_TOGGLE; sConfigOC.Pulse = 500; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_OC_ConfigChannel(&htim3, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ HAL_TIM_MspPostInit(&htim3); } /** * @brief TIM4 Initialization Function * @param None * @retval None */ static void MX_TIM4_Init(void) { /* USER CODE BEGIN TIM4_Init 0 */ /* USER CODE END TIM4_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = { 0}; TIM_MasterConfigTypeDef sMasterConfig = { 0}; /* USER CODE BEGIN TIM4_Init 1 */ /* USER CODE END TIM4_Init 1 */ htim4.Instance = TIM4; htim4.Init.Prescaler = 80 - 1; htim4.Init.CounterMode = TIM_COUNTERMODE_UP; htim4.Init.Period = 999; htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim4) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM4_Init 2 */ /* USER CODE END TIM4_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMAMUX1_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = { 0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0 |GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4 |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8 |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_5|GPIO_PIN_8|GPIO_PIN_9, GPIO_PIN_RESET); /*Configure GPIO pins : PC13 PC14 PC15 PC0 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 PC12 */ GPIO_InitStruct.Pin = GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15|GPIO_PIN_0 |GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_4 |GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8 |GPIO_PIN_9|GPIO_PIN_10|GPIO_PIN_11|GPIO_PIN_12; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PA0 */ GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : PB0 PB1 PB2 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pin : PA8 */ GPIO_InitStruct.Pin = GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PD2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); /*Configure GPIO pins : PB5 PB8 PB9 */ GPIO_InitStruct.Pin = GPIO_PIN_5|GPIO_PIN_8|GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void led_proc(void) { if(interface == DATA) { if(v1 > v2) led_ctrl(0x0100 << vd,1); else led_ctrl(0x0100 << vd,0); if(f1 > f2) led_ctrl(0x0100 << fd,1); else led_ctrl(0x0100 << fd,0); } } void lcd_proc(void) { if(interface == DATA) { memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," DATA "); LCD_DisplayStringLine(Line1,lcd_str); memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," V1:%.1f ",v1); LCD_DisplayStringLine(Line3,lcd_str); memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," V2:%.1f ",v2); LCD_DisplayStringLine(Line4,lcd_str); memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," F1:%dHz ",f1); LCD_DisplayStringLine(Line5,lcd_str); memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," F2:%dHz ",f2); LCD_DisplayStringLine(Line6,lcd_str); } else { memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," PARA "); LCD_DisplayStringLine(Line1,lcd_str); memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," VD:LD%d ",vd_temp + 1); LCD_DisplayStringLine(Line3,lcd_str); memset(lcd_str,0,sizeof(lcd_str)); snprintf((char*)lcd_str,20," FD:LD%d ",fd_temp + 1); LCD_DisplayStringLine(Line4,lcd_str); LCD_DisplayStringLine(Line5,(uint8_t *)" "); LCD_DisplayStringLine(Line6,(uint8_t *)" "); } } void adc_proc(void) { v1 = adc_value[0] / 4095.0 * 3.3; v2 = adc_value[1] / 4095.0 * 3.3; // Á¬Ðøת»»ÐèÒªÅäÖÃcontinuousΪenable // endofsingleºÍendofsequence¶¼¿ÉÒÔ //HAL_ADC_Start_DMA(&hadc2,(uint32_t*)adc_value,2); } void pwm_proc(void) { if(pwm_refresh_flag) { pwm_refresh_flag = 0; if(select == 0) { CCR3_Val = 1000000 / f1 / 2; } else { CCR3_Val = 1000000 / f2 / 2; } } } void key_scan(void) { key_refresh(); if(key_falling == B1) { led_init(); if(interface == DATA) { interface = SETTING; select = 0; } else { interface = DATA; vd = vd_temp; fd = fd_temp; } } else if(key_falling == B2 && interface == SETTING) { vd_temp = (vd_temp + 1) % 8; if(vd_temp == fd_temp) vd_temp = (vd_temp + 1) % 8; } else if(key_falling == B3 && interface == SETTING) { fd_temp = (fd_temp + 1) % 8; if(fd_temp == vd_temp) fd_temp = (fd_temp + 1) % 8; } else if(key_falling == B4) { select = !select; } } void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { if(htim->Instance == TIM4) { if(++key_tick == 10) { key_tick = 0; key_scan(); } if(++pwm_refresh_tick == 500) { pwm_refresh_tick = 0; pwm_refresh_flag = 1; f1 = TIM2_IC2_Freq; f2 = TIM2_IC3_Freq; } } } void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim) { if(htim->Instance == TIM2) { if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { if(TIM2_IC2_CaptureNumber == 0) { /* Get the Input Capture value */ TIM2_IC2_ReadValue1 = TIM2->CCR2; TIM2_IC2_CaptureNumber = 1; } else if(TIM2_IC2_CaptureNumber == 1) { /* Get the Input Capture value */ TIM2_IC2_ReadValue2 = TIM2->CCR2; /* Capture computation */ if (TIM2_IC2_ReadValue2 > TIM2_IC2_ReadValue1) { TIM2_IC2_Capture = (TIM2_IC2_ReadValue2 - TIM2_IC2_ReadValue1); } else { TIM2_IC2_Capture = ((0xFFFFFFFF - TIM2_IC2_ReadValue1) + TIM2_IC2_ReadValue2); } /* Frequency computation */ TIM2_IC2_Freq = (uint32_t) 1000000 / TIM2_IC2_Capture; TIM2_IC2_CaptureNumber = 0; } } if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_3) { if(TIM2_IC3_CaptureNumber == 0) { /* Get the Input Capture value */ TIM2_IC3_ReadValue1 = TIM2->CCR3; TIM2_IC3_CaptureNumber = 1; } else if(TIM2_IC3_CaptureNumber == 1) { /* Get the Input Capture value */ TIM2_IC3_ReadValue2 = TIM2->CCR3; /* Capture computation */ if (TIM2_IC3_ReadValue2 > TIM2_IC3_ReadValue1) { TIM2_IC3_Capture = (TIM2_IC3_ReadValue2 - TIM2_IC3_ReadValue1); } else { TIM2_IC3_Capture = ((0xFFFFFFFF - TIM2_IC3_ReadValue1) + TIM2_IC3_ReadValue2); } /* Frequency computation */ TIM2_IC3_Freq = (uint32_t) 1000000 / TIM2_IC3_Capture; TIM2_IC3_CaptureNumber = 0; } } } } void HAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef *htim) { uint16_t capture = 0; if(htim->Instance == TIM3) { if(htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2) { capture = TIM3->CCR2; TIM3->CCR2 = capture + CCR3_Val; } } } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

四、细节说明

这一届的赛题很有可能会忽略一个小问题导致出现一个小bug,就是LED。题目要求只有相应的两个LED点亮,其他的LED都处于熄灭的状态,所以我们每一次进入LED设置界面的时候,就应该将所有的LED先关闭,避免设置完成了,上一次设置的LED灯还是亮着的情况。

五、完整代码下载

代码使用说明,一定要看

完整代码下载点我

你可能感兴趣的:(蓝桥杯,stm32,嵌入式,c语言)