阅读指南
通用配置项
xyAxis:直角坐标系中的 x、y 轴(Line、Bar、Scatter、EffectScatter、Kline)
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline)
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
图表详细
Bar(柱状图/条形图)
EffectScatter(带有涟漪特效动画的散点图)
Funnel(漏斗图)
Gauge(仪表盘)
Geo(地理坐标系)
Graph(关系图)
HeatMap(热力图)
Kline(K线图)
Line(折线/面积图)
Liquid(水球图)
Map(地图)
Parallel(平行坐标系)
Pie(饼图)
Polar(极坐标系)
Radar(雷达图)
Scatter(散点图)
WordCloud(词云图)
项目概况
pyecharts 是一个用于生成 Echarts 图表的类库。实际上就是 Echarts 与 Python 的对接。
Echarts 是百度开源的一个数据可视化 JS 库。看了官方的介绍文档,觉得很不错,就想看看有没有人实现了 Python 库可以直接调用的。Github 上找到了一个 echarts-python 不过这个项目已经很久没更新且也没什么介绍文档。借鉴了该项目,就自己动手实现一个,于是就有了 pyecharts。API 接口是从另外一个图表库 pygal 中模仿的。
如何安装
pyecharts 兼容 Python2 和 Python3。当前版本为 0.1.7,关于版本信息请查看 changelog.md,一定要看一下阿!
pip install pyecharts
开始使用
首先开始来绘制你的第一个图表
from pyecharts import Bar
bar = Bar("我的第一个图表", "这里是副标题")
bar.add("服装", ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"], [5, 20, 36, 10, 75, 90])
bar.show_config()
bar.render()
Tip: 可以按右边的下载按钮将图片下载到本地
add()
主要方法,用于添加图表的数据和设置各种配置项
show_config()
打印输出图表的所有配置项
render()
默认将会在根目录下生成一个 render.html 的文件,支持 path 参数,设置文件保存位置,如 render(r"e:\my_first_chart.html"),文件用浏览器打开。
默认的编码类型为 UTF-8,在 Python3 中是没什么问题的,Python3 对中文的支持好很多。但是在 Python2 中,编码的处理是个很头疼的问题,暂时没能找到完美的解决方法,目前只能通过文本编辑器自己进行二次编码,我用的是 Visual Studio Code,先通过 Gbk 编码重新打开,然后再用 UTF-8 重新保存,这样用浏览器打开的话就不会出现中文乱码问题了。
基本上所有的图表类型都是这样绘制的:
chart_name = Type() 初始化具体类型图表。
add() 添加数据及配置项。
render() 生成 .html 文件。
add() 数据一般为两个列表(长度一致),如果你的数据是字典或者是带元组的字典。可利用 cast() 方法转换。
@staticmethod
cast(seq)
``` 转换数据序列,将带字典和元组类型的序列转换为 k_lst,v_lst 两个列表 ```
元组列表
[(A1, B1), (A2, B2), (A3, B3), (A4, B4)] --> k_lst[ A[i1, i2...] ], v_lst[ B[i1, i2...] ]
字典列表
[{A1: B1}, {A2: B2}, {A3: B3}, {A4: B4}] --> k_lst[ A[i1, i2...] ], v_lst[ B[i1, i2...] ]
字典
{A1: B1, A2: B2, A3: B3, A4: B4} -- > k_lst[ A[i1, i2...] ], v_lst[ B[i1, i2...] ]
当然你也可以采用更加酷炫的方式,使用 Jupyter Notebook 来展示图表,matplotlib 有的,pyecharts 也会有的
比如这样
还有这样
Tip: 该功能在 0.1.8 版本中正式加入,要使用请升级到最新版本。
这里只是举几个例子。如需使用 Jupyter Notebook 来展示图表,只需要调用 render_notebook() 即可,同时兼容 Python2 和 Python3 的 Jupyter Notebook 环境。所有图表均可正常显示,与浏览器一致的交互体验,这下展示报告连 PPT 都省了!!
在这里要特别感谢 @ygw365 提供这部分的代码模板 和 muxuezi 协助对代码进行改进,特此感谢!也欢迎其他开发者参与到项目的开发中来。一起完善这个项目!
图表类初始化所接受的参数(所有类型的图表都一样)。
title -> str
主标题文本,支持 \n 换行,默认为 ""
subtitle -> str
副标题文本,支持 \n 换行,默认为 ""
width -> int
画布宽度,默认为 800(px)
height -> int
画布高度,默认为 400(px)
title_pos -> str/int
标题距离左侧距离,默认为'left',有'auto', 'left', 'right', 'center'可选,也可为百分比或整数
title_top -> str/int
标题距离顶部距离,默认为'top',有'top', 'middle', 'bottom'可选,也可为百分比或整数
title_color -> str
主标题文本颜色,默认为 '#000'
subtitle_color -> str
副标题文本颜色,默认为 '#aaa'
title_text_size -> int
主标题文本字体大小,默认为 18
subtitle_text_size -> int
副标题文本字体大小,默认为 12
background_color -> str
画布背景颜色,默认为 '#fff'
is_grid -> bool
是否使用 grid 组件,grid 组件用于并行显示图表。具体实现参见 用户自定义
通用配置项
通用配置项均在 add() 中设置
xyAxis:直角坐标系中的 x、y 轴(Line、Bar、Scatter、EffectScatter、Kline)
is_convert -> bool
是否交换 x 轴与 y 轴
xy_text_size -> int
x 轴和 y 轴字体大小
namegap -> int
坐标轴名称与轴线之间的距离
x_axis -> list
x 轴数据项
xaxis_name -> str
x 轴名称
xaxis_name_pos -> str
x 轴名称位置,有'start','middle','end'可选
y_axis -> list
y 坐标轴数据
yaxis_formatter -> str
y 轴标签格式器,如 '天',则 y 轴的标签为数据加'天'(3 天,4 天),默认为 ""
yaxis_name -> str
y 轴名称
yaxis_name_pos -> str
y 轴名称位置,有'start', 'middle','end'可选
interval -> int
坐标轴刻度标签的显示间隔,在类目轴中有效。默认会采用标签不重叠的策略间隔显示标签
设置成 0 强制显示所有标签
设置为 1,表示『隔一个标签显示一个标签』,如果值为 2,表示隔两个标签显示一个标签,以此推
dataZoom:dataZoom 组件 用于区域缩放,从而能自由关注细节的数据信息,或者概览数据整体,或者去除离群点的影响。(Line、Bar、Scatter、EffectScatter、Kline)
is_datazoom_show -> bool
是否使用区域缩放组件,默认为 False
datazoom_type -> str
区域缩放组件类型,默认为'slider',有'slider', 'inside'可选
datazoom_range -> list
区域缩放的范围,默认为[50, 100]
legend:图例组件。图例组件展现了不同系列的标记(symbol),颜色和名字。可以通过点击图例控制哪些系列不显示。
is_legend_show -> bool
是否显示顶端图例,默认为 True
legend_orient -> str
图例列表的布局朝向,默认为'horizontal',有'horizontal', 'vertical'可选
legend_pos -> str
图例组件离容器左侧的距离,默认为'center',有'left', 'center', 'right'可选
legend_top -> str
图例组件离容器上侧的距离,默认为'top',有'top', 'center', 'bottom'可选
label:图形上的文本标签,可用于说明图形的一些数据信息,比如值,名称等。
is_label_show -> bool
是否正常显示标签,默认不显示。标签即各点的数据项信息
is_emphasis -> bool
是否高亮显示标签,默认显示。高亮标签即选中数据时显示的信息项。
label_pos -> str
标签的位置,Bar 图默认为'top'。有'top', 'left', 'right', 'bottom', 'inside','outside'可选
label_text_color -> str
标签字体颜色,默认为 "#000"
label_text_size -> int
标签字体大小,默认为 12
is_random -> bool
是否随机排列颜色列表,默认为 False
label_color -> list
自定义标签颜色。全局颜色列表,所有图表的图例颜色均在这里修改。如 Bar 的柱状颜色,Line 的线条颜色等等。
formatter -> list
标签内容格式器,有'series', 'name', 'value', 'percent'可选。如 ["name", "value"]
series:图例名称
name:数据项名称
value:数据项值
percent:数据的百分比(主要用于饼图)
Tip: is_random 可随机打乱图例颜色列表,算是切换风格?建议试一试!
lineStyle:带线图形的线的风格选项(Line、Polar、Radar、Graph、Parallel)
line_width -> int
线的宽度,默认为 1
line_opacity -> float
线的透明度,0 为完全透明,1 为完全不透明。默认为 1
line_curve -> float
线的弯曲程度,0 为完全不弯曲,1 为最弯曲。默认为 0
line_type -> str
线的类型,有'solid', 'dashed', 'dotted'可选。默认为'solid'
图表详细
Bar(柱状图/条形图)
柱状/条形图,通过柱形的高度/条形的宽度来表现数据的大小。
Bar.add() 方法签名
add(name, x_axis, y_axis, is_stack=False, **kwargs)
name -> str
图例名称
x_axis -> list
x 坐标轴数据
y_axis -> list
y 坐标轴数据
is_stack -> bool
数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
from pyecharts import Bar
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图数据堆叠示例")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True)
bar.render()
Tip: 全局配置项要在最后一个 add() 上设置,否侧设置会被冲刷掉。
from pyecharts import Bar
bar = Bar("标记线和标记点示例")
bar.add("商家A", attr, v1, mark_point=["average"])
bar.add("商家B", attr, v2, mark_line=["min", "max"])
bar.render()
mark_point -> list
标记点,有'min', 'max', 'average'可选
mark_line -> list
标记线,有'min', 'max', 'average'可选
mark_point_symbol -> str
标记点图形,,默认为'pin',有'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选
mark_point_symbolsize -> int
标记点图形大小,默认为 50
mark_point_textcolor -> str
标记点字体颜色,默认为'#fff'
from pyecharts import Bar
bar = Bar("x 轴和 y 轴交换")
bar.add("商家A", attr, v1)
bar.add("商家B", attr, v2, is_convert=True)
bar.render()
dataZoom 效果,'slider' 类型
import random
attr = ["{}天".format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar("Bar - datazoom - slider 示例")
bar.add("", attr, v1, is_label_show=True, is_datazoom_show=True)
bar.show_config()
bar.render()
'inside' 类型
attr = ["{}天".format(i) for i in range(30)]
v1 = [random.randint(1, 30) for _ in range(30)]
bar = Bar("Bar - datazoom - inside 示例")
bar.add("", attr, v1, is_datazoom_show=True, datazoom_type='inside', datazoom_range=[10, 25])
bar.show_config()
bar.render()
Tip: datazoom 适合所有平面直角坐标系图形,也就是(Line、Bar、Scatter、EffectScatter、Kline)
Tip: 可以通过 label_color 来设置柱状的颜色,如 ['#eee', '#000'],所有的图表类型的图例颜色都可通过 label_color 来修改。
EffectScatter(带有涟漪特效动画的散点图)
利用动画特效可以将某些想要突出的数据进行视觉突出。
EffectScatter.add() 方法签名
add(name, x_value, y_value, symbol_size=10, **kwargs)
name -> str
图例名称
x_axis -> list
x 坐标轴数据
y_axis -> list
y 坐标轴数据
symbol_size -> int
标记图形大小,默认为 10
from pyecharts import EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [25, 20, 15, 10, 60, 33]
es = EffectScatter("动态散点图示例")
es.add("effectScatter", v1, v2)
es.render()
es = EffectScatter("动态散点图各种图形示例")
es.add("", [10], [10], symbol_size=20, effect_scale=3.5, effect_period=3, symbol="pin")
es.add("", [20], [20], symbol_size=12, effect_scale=4.5, effect_period=4,symbol="rect")
es.add("", [30], [30], symbol_size=30, effect_scale=5.5, effect_period=5,symbol="roundRect")
es.add("", [40], [40], symbol_size=10, effect_scale=6.5, effect_brushtype='fill',symbol="diamond")
es.add("", [50], [50], symbol_size=16, effect_scale=5.5, effect_period=3,symbol="arrow")
es.add("", [60], [60], symbol_size=6, effect_scale=2.5, effect_period=3,symbol="triangle")
es.render()
symbol -> str
标记图形,有'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选
effect_brushtype -> str
波纹绘制方式,有'stroke', 'fill'可选。默认为'stroke'
effect_scale -> float
动画中波纹的最大缩放比例。默认为 2.5
effect_period -> float
动画持续的时间。默认为 4(s)
Funnel(漏斗图)
Funnel.add() 方法签名
add(self, name, attr, value, **kwargs)
name -> str
图例名称
attr -> list
属性名称
value -> list
属性所对应的值
from pyecharts import Funnel
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
funnel = Funnel("漏斗图示例")
funnel.add("商品", attr, value, is_label_show=True, label_pos="inside", label_text_color="#fff")
funnel.render()
funnel = Funnel("漏斗图示例", width=600, height=400, title_pos='center')
funnel.add("商品", attr, value, is_label_show=True, label_pos="outside", legend_orient='vertical',
legend_pos='left')
funnel.show_config()
funnel.render()
Gauge(仪表盘)
Gauge.add() 方法签名
add(name, attr, value, scale_range=None, angle_range=None, **kwargs)
name -> str
图例名称
attr -> list
属性名称
value -> list
属性所对应的值
scale_range -> list
仪表盘数据范围。默认为 [0, 100]
angle_range -> list
仪表盘角度范围。默认为 [225, -45]
from pyecharts import Gauge
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 66.66)
gauge.show_config()
gauge.render()
gauge = Gauge("仪表盘示例")
gauge.add("业务指标", "完成率", 166.66, angle_range=[180, 0], scale_range=[0, 200], is_legend_show=False)
gauge.show_config()
gauge.render()
Geo(地理坐标系)
地理坐标系组件用于地图的绘制,支持在地理坐标系上绘制散点图,线集。
Geo.add() 方法签名
add(name, attr, value, type="scatter", maptype='china', symbol_size=12, border_color="#111",
geo_normal_color="#323c48", geo_emphasis_color="#2a333d", **kwargs)
name -> str
图例名称
attr -> list
属性名称
value -> list
属性所对应的值
type -> str
图例类型,有'scatter', 'effectscatter', 'heatmap'可选。默认为 'scatter'
maptype -> str
地图类型,目前只有 'china' 可选
symbol_size -> int
标记图形大小。默认为 12
border_color -> str
地图边界颜色。默认为 '#111'
geo_normal_color -> str
正常状态下地图区域的颜色。默认为 '#323c48'
geo_emphasis_color -> str
高亮状态下地图区域的颜色。默认为 '#2a333d'
Scatter 类型
from pyecharts import Geo
data = [
("海门", 9),("鄂尔多斯", 12),("招远", 12),("舟山", 12),("齐齐哈尔", 14),("盐城", 15),
("赤峰", 16),("青岛", 18),("乳山", 18),("金昌", 19),("泉州", 21),("莱西", 21),
("日照", 21),("胶南", 22),("南通", 23),("拉萨", 24),("云浮", 24),("梅州", 25),
("文登", 25),("上海", 25),("攀枝花", 25),("威海", 25),("承德", 25),("厦门", 26),
("汕尾", 26),("潮州", 26),("丹东", 27),("太仓", 27),("曲靖", 27),("烟台", 28),
("福州", 29),("瓦房店", 30),("即墨", 30),("抚顺", 31),("玉溪", 31),("张家口", 31),
("阳泉", 31),("莱州", 32),("湖州", 32),("汕头", 32),("昆山", 33),("宁波", 33),
("湛江", 33),("揭阳", 34),("荣成", 34),("连云港", 35),("葫芦岛", 35),("常熟", 36),
("东莞", 36),("河源", 36),("淮安", 36),("泰州", 36),("南宁", 37),("营口", 37),
("惠州", 37),("江阴", 37),("蓬莱", 37),("韶关", 38),("嘉峪关", 38),("广州", 38),
("延安", 38),("太原", 39),("清远", 39),("中山", 39),("昆明", 39),("寿光", 40),
("盘锦", 40),("长治", 41),("深圳", 41),("珠海", 42),("宿迁", 43),("咸阳", 43),
("铜川", 44),("平度", 44),("佛山", 44),("海口", 44),("江门", 45),("章丘", 45),
("肇庆", 46),("大连", 47),("临汾", 47),("吴江", 47),("石嘴山", 49),("沈阳", 50),
("苏州", 50),("茂名", 50),("嘉兴", 51),("长春", 51),("胶州", 52),("银川", 52),
("张家港", 52),("三门峡", 53),("锦州", 54),("南昌", 54),("柳州", 54),("三亚", 54),
("自贡", 56),("吉林", 56),("阳江", 57),("泸州", 57),("西宁", 57),("宜宾", 58),
("呼和浩特", 58),("成都", 58),("大同", 58),("镇江", 59),("桂林", 59),("张家界", 59),
("宜兴", 59),("北海", 60),("西安", 61),("金坛", 62),("东营", 62),("牡丹江", 63),
("遵义", 63),("绍兴", 63),("扬州", 64),("常州", 64),("潍坊", 65),("重庆", 66),
("台州", 67),("南京", 67),("滨州", 70),("贵阳", 71),("无锡", 71),("本溪", 71),
("克拉玛依", 72),("渭南", 72),("马鞍山", 72),("宝鸡", 72),("焦作", 75),("句容", 75),
("北京", 79),("徐州", 79),("衡水", 80),("包头", 80),("绵阳", 80),("乌鲁木齐", 84),
("枣庄", 84),("杭州", 84),("淄博", 85),("鞍山", 86),("溧阳", 86),("库尔勒", 86),
("安阳", 90),("开封", 90),("济南", 92),("德阳", 93),("温州", 95),("九江", 96),
("邯郸", 98),("临安", 99),("兰州", 99),("沧州", 100),("临沂", 103),("南充", 104),
("天津", 105),("富阳", 106),("泰安", 112),("诸暨", 112),("郑州", 113),("哈尔滨", 114),
("聊城", 116),("芜湖", 117),("唐山", 119),("平顶山", 119),("邢台", 119),("德州", 120),
("济宁", 120),("荆州", 127),("宜昌", 130),("义乌", 132),("丽水", 133),("洛阳", 134),
("秦皇岛", 136),("株洲", 143),("石家庄", 147),("莱芜", 148),("常德", 152),("保定", 153),
("湘潭", 154),("金华", 157),("岳阳", 169),("长沙", 175),("衢州", 177),("廊坊", 193),
("菏泽", 194),("合肥", 229),("武汉", 273),("大庆", 279)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 200], visual_text_color="#fff", symbol_size=15, is_visualmap=True)
geo.show_config()
geo.render()
visualMap:是视觉映射组件,用于进行『视觉编码』,也就是将数据映射到视觉元素(视觉通道)
is_visualmap -> bool
是否使用视觉映射组件
visual_range -> list
指定组件的允许的最小值与最大值。默认为 [0, 100]
visual_text_color -> list
两端文本颜色。
visual_range_text -> list
两端文本。默认为 ['low', 'hight']
visual_range_color -> list
过渡颜色。默认为 ['#50a3ba', '#eac763', '#d94e5d']
visual_orient -> str
visualMap 组件条的方向,默认为'vertical',有'vertical', 'horizontal'可选。
visual_pos -> str/int
visualmap 组件条距离左侧的位置,默认为'left'。有'right', 'center', 'right'可选,也可为百分数或整数。
visual_top -> str/int
visualmap 组件条距离顶部的位置,默认为'top'。有'top', 'center', 'bottom'可选,也可为百分数或整数。
is_calculable -> bool
是否显示拖拽用的手柄(手柄能拖拽调整选中范围)。默认为 True
HeatMap 类型
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center", width=1200, height=600,
background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="heatmap", is_visualmap=True, visual_range=[0, 300], visual_text_color='#fff')
geo.show_config()
geo.render()
EffectScatter 类型
from pyecharts import Geo
data = [("海门", 9), ("鄂尔多斯", 12), ("招远", 12), ("舟山", 12), ("齐齐哈尔", 14), ("盐城", 15)]
geo = Geo("全国主要城市空气质量", "data from pm2.5", title_color="#fff", title_pos="center",
width=1200, height=600, background_color='#404a59')
attr, value = geo.cast(data)
geo.add("", attr, value, type="effectScatter", is_random=True, effect_scale=5)
geo.show_config()
geo.render()
Graph(关系图)
用于展现节点以及节点之间的关系数据。
Graph.add() 方法签名
add(name, nodes, links, categories=None, is_focusnode=True, is_roam=True, is_rotatelabel=False,
layout="force", edge_length=50, gravity=0.2, repulsion=50, **kwargs)
name -> str
图例名称
nodes -> dict
关系图结点,包含的数据项有
name:结点名称(必须有!)
x:节点的初始 x 值
y:节点的初始 y 值
value:结点数值
category:结点类目
symbol:标记图形
symbolSize:标记图形大小
links -> dict
结点间的关系数据,包含的数据项有
source:边的源节点名称的字符串,也支持使用数字表示源节点的索引(必须有!)
target:边的目标节点名称的字符串,也支持使用数字表示源节点的索引(必须有!)
vaule:边的数值,可以在力引导布局中用于映射到边的长度
categories -> list
结点分类的类目,结点可以指定分类,也可以不指定。
如果节点有分类的话可以通过 nodes[i].category 指定每个节点的类目,类目的样式会被应用到节点样式上
is_focusnode -> bool
是否在鼠标移到节点上的时候突出显示节点以及节点的边和邻接节点。默认为 True
is_roam -> bool/str
是否开启鼠标缩放和平移漫游。默认为 True
如果只想要开启缩放或者平移,可以设置成'scale'或者'move'。设置成 True 为都开启
is_rotatelabel -> bool
是否旋转标签,默认为 False
layout -> str
关系图布局,默认为 'force'
none:不采用任何布局,使用节点中必须提供的 x, y 作为节点的位置。
circular:采用环形布局
force:采用力引导布局
edge_length -> int
力布局下边的两个节点之间的距离,这个距离也会受 repulsion 影响。默认为 50
支持设置成数组表达边长的范围,此时不同大小的值会线性映射到不同的长度。值越小则长度越长
gravity -> int
节点受到的向中心的引力因子。该值越大节点越往中心点靠拢。默认为 0.2
repulsion -> int
节点之间的斥力因子。默认为 50
支持设置成数组表达斥力的范围,此时不同大小的值会线性映射到不同的斥力。值越大则斥力越大
from pyecharts import Graph
nodes = [{"name": "结点1", "symbolSize": 10},
{"name": "结点2", "symbolSize": 20},
{"name": "结点3", "symbolSize": 30},
{"name": "结点4", "symbolSize": 40},
{"name": "结点5", "symbolSize": 50},
{"name": "结点6", "symbolSize": 40},
{"name": "结点7", "symbolSize": 30},
{"name": "结点8", "symbolSize": 20}]
links = []
for i in nodes:
for j in nodes:
links.append({"source": i.get('name'), "target": j.get('name')})
graph = Graph("关系图-力引导布局示例")
graph.add("", nodes, links, repulsion=8000)
graph.show_config()
graph.render()
graph = Graph("关系图-环形布局示例")
graph.add("", nodes, links, is_label_show=True, repulsion=8000, layout='circular', label_text_color=None)
graph.show_config()
graph.render()
from pyecharts import Graph
import json
with open("..\json\weibo.json", "r", encoding="utf-8") as f:
j = json.load(f)
nodes, links, categories, cont, mid, userl = j
graph = Graph("微博转发关系图", width=1200, height=600)
graph.add("", nodes, links, categories, label_pos="right", repulsion=50, is_legend_show=False,
line_curve=0.2, label_text_color=None)
graph.show_config()
graph.render()
Tip: 可配置 lineStyle 参数
HeatMap(热力图)
热力图主要通过颜色去表现数值的大小,必须要配合 visualMap 组件使用。直角坐标系上必须要使用两个类目轴。
HeatMap.add() 方法签名
add(name, x_axis, y_axis, data, **kwargs)
name -> str
图例名称
x_axis -> str
x 坐标轴数据。需为类目轴,也就是不能是数值。
y_axis -> str
y 坐标轴数据。需为类目轴,也就是不能是数值。
data -> [list],包含列表的列表
数据项,数据中,每一行是一个『数据项』,每一列属于一个『维度』
import random
from pyecharts import HeatMap
x_axis = ["12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_aixs = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
heatmap = HeatMap()
heatmap.add("热力图直角坐标系", x_axis, y_aixs, data, is_visualmap=True,
visual_text_color="#000", visual_orient='horizontal')
heatmap.show_config()
heatmap.render()
Tip: 热力图必须配合 VisualMap 使用才有效果。
Kline(K线图)
红涨蓝跌
Kline.add() 方法签名
add(name, x_axis, y_axis, **kwargs)
name -> str
图例名称
x_axis -> list
x 坐标轴数据
y_axis -> [list],包含列表的列表
y 坐标轴数据。数据中,每一行是一个『数据项』,每一列属于一个『维度』。
数据项具体为 [open, close, lowest, highest] (即:[开盘值, 收盘值, 最低值, 最高值])
from pyecharts import Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1)
kline.show_config()
kline.render()
Kline + dataZoom
kline = Kline("K 线图示例")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1, mark_point=["max"], is_datazoom_show=True)
kline.show_config()
kline.render()
Line(折线/面积图)
折线图是用折线将各个数据点标志连接起来的图表,用于展现数据的变化趋势。
Line.add() 方法签名
add(name, x_axis, y_axis, is_symbol_show=True, is_smooth=False, is_stack=False,
is_step=False, is_fill=False, **kwargs)
name -> str
图例名称
x_axis -> list
x 坐标轴数据
y_axis -> list
y 坐标轴数据
is_symbol_show -> bool
是否显示标记图形,默认为 True
is_smooth -> bool
是否平滑曲线显示,默认为 False
is_stack -> bool
数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置。默认为 False
is_step -> bool/str
是否是阶梯线图。可以设置为 True 显示成阶梯线图。默认为 False
也支持设置成'start', 'middle', 'end'分别配置在当前点,当前点与下个点的中间下个点拐弯。
is_fill -> bool
是否填充曲线所绘制面积,默认为 False
from pyecharts import Line
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 10, 100]
v2 = [55, 60, 16, 20, 15, 80]
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average"])
line.add("商家B", attr, v2, is_smooth=True, mark_line=["max", "average"])
line.show_config()
line.render()
mark_point -> list
标记点,有'min', 'max', 'average'可选
mark_line -> list
标记线,有'min', 'max', 'average'可选
mark_point_symbol -> str
标记点图形,,默认为'pin',有'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选
mark_point_symbolsize -> int
标记点图形大小,默认为 50
mark_point_textcolor -> str
标记点字体颜色,默认为'#fff'
标记点其他配置
line = Line("折线图示例")
line.add("商家A", attr, v1, mark_point=["average", "max", "min"],
mark_point_symbol='diamond', mark_point_textcolor='#40ff27')
line.add("商家B", attr, v2, mark_point=["average", "max", "min"],
mark_point_symbol='arrow', mark_point_symbolsize=40)
line.show_config()
line.render()
line = Line("折线图-数据堆叠示例")
line.add("商家A", attr, v1, is_stack=True, is_label_show=True)
line.add("商家B", attr, v2, is_stack=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-阶梯图示例")
line.add("商家A", attr, v1, is_step=True, is_label_show=True)
line.show_config()
line.render()
line = Line("折线图-面积图示例")
line.add("商家A", attr, v1, is_fill=True, line_opacity=0.2, area_opacity=0.4, symbol=None)
line.add("商家B", attr, v2, is_fill=True, area_color='#000', area_opacity=0.3, is_smooth=True)
line.show_config()
line.render()
area_opacity -> float
填充区域透明度
area_color -> str
填充区域颜色
Tip: 可配置 lineStyle 参数
Tip: 可以通过 label_color 来设置线条颜色,如 ['#eee', '#000'],所有的图表类型的图例颜色都可通过 label_color 来修改。
Liquid(水球图)
主要用来突出数据的百分比。
Liquid.add() 方法签名
add(name, data, shape='circle', liquid_color=None, is_liquid_animation=True,
is_liquid_outline_show=True, **kwargs)
name -> str
图例名称
data -> list
数据项
shape -> str
水球外形,有'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow'可选。默认'circle'
liquid_color -> list
波浪颜色,默认的颜色列表为['#294D99', '#156ACF', '#1598ED', '#45BDFF']。
is_liquid_animation -> bool
是否显示波浪动画,默认为 True。
is_liquid_outline_show -> bool
是否显示边框,默认为 True。
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6])
liquid.show_config()
liquid.render()
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_outline_show=False)
liquid.show_config()
liquid.render()
from pyecharts import Liquid
liquid = Liquid("水球图示例")
liquid.add("Liquid", [0.6, 0.5, 0.4, 0.3], is_liquid_animation=False, shape='diamond')
liquid.show_config()
liquid.render()
Map(地图)
地图主要用于地理区域数据的可视化。
Map.add() 方法签名
add(name, attr, value, is_roam=True, maptype='china', **kwargs)
name -> str
图例名称
attr -> list
属性名称
value -> list
属性所对应的值
is_roam -> bool/str
是否开启鼠标缩放和平移漫游。默认为 True
如果只想要开启缩放或者平移,可以设置成'scale'或者'move'。设置成 True 为都开启
maptype -> str
地图类型。
支持 china、world、安徽、澳门、北京、重庆、福建、福建、甘肃、广东,广西、广州、海南、河北、黑龙江、河南、湖北、湖南、江苏、江西、吉林、辽宁、内蒙古、宁夏、青海、山东、上海、陕西、四川、台湾、天津、香港、新疆、西藏、云南、浙江
from pyecharts import Map
value = [155, 10, 66, 78]
attr = ["福建", "山东", "北京", "上海"]
map = Map("全国地图示例", width=1200, height=600)
map.add("", attr, value, maptype='china')
map.show_config()
map.render()
from pyecharts import Map
value = [155, 10, 66, 78, 33, 80, 190, 53, 49.6]
attr = ["福建", "山东", "北京", "上海", "甘肃", "新疆", "河南", "广西", "西藏"]
map = Map("Map 结合 VisualMap 示例", width=1200, height=600)
map.add("", attr, value, maptype='china', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
Tip: 可结合 visualMap 组件进行设置
from pyecharts import Map
value = [20, 190, 253, 77, 65]
attr = ['汕头市', '汕尾市', '揭阳市', '阳江市', '肇庆市']
map = Map("广东地图示例", width=1200, height=600)
map.add("", attr, value, maptype='广东', is_visualmap=True, visual_text_color='#000')
map.show_config()
map.render()
关于自定义地图
因为地图涉及范围太广,项目不可能涵盖所有的地图,不过不用担心。Echarts 官方提供了自己定制地图的功能 echart-map,根据自己所需制定相应的地图,下载成 JS 文件格式。
打开安装目录下的 pyecharts/temple.py 文件,在 _temple 变量下对应的增加类似一行
而对应的 Jupyter Notebook 下的就在 _mapindex 变量下新增类似一行
"北京": "beijing: '//oog4yfyu0.bkt.clouddn.com/beijing'"
然后就可以在项目中使用自定义的地图了!Js 的引入方式由自己决定,能被项目所找到就行!
Parallel(平行坐标系)
平行坐标系是一种常用的可视化高维数据的图表。
Parallel.add() 方法签名
add(name, data, **kwargs)
name -> str
图例名称
data -> [list],包含列表的列表
数据项。数据中,每一行是一个『数据项』,每一列属于一个『维度』
Parallel.config() 方法签名
config(schema=None, c_schema=None)
schema
默认平行坐标系的坐标轴信息,如 ["dim_name1", "dim_name2", "dim_name3"]。
c_schema
用户自定义平行坐标系的坐标轴信息。
dim -> int
维度索引
name > str
维度名称
type -> str
维度类型,有'value', 'category'可选
value:数值轴,适用于连续数据。
category: 类目轴,适用于离散的类目数据。
min -> int
坐标轴刻度最小值。
max -> int
坐标轴刻度最大值。
inverse - bool
是否是反向坐标轴。默认为 False
nameLocation -> str
坐标轴名称显示位置。有'start', 'middle', 'end'可选
from pyecharts import Parallel
schema = ["data", "AQI", "PM2.5", "PM10", "CO", "NO2"]
data = [
[1, 91, 45, 125, 0.82, 34],
[2, 65, 27, 78, 0.86, 45,],
[3, 83, 60, 84, 1.09, 73],
[4, 109, 81, 121, 1.28, 68],
[5, 106, 77, 114, 1.07, 55],
[6, 109, 81, 121, 1.28, 68],
[7, 106, 77, 114, 1.07, 55],
[8, 89, 65, 78, 0.86, 51, 26],
[9, 53, 33, 47, 0.64, 50, 17],
[10, 80, 55, 80, 1.01, 75, 24],
[11, 117, 81, 124, 1.03, 45]
]
parallel = Parallel("平行坐标系-默认指示器")
parallel.config(schema)
parallel.add("parallel", data, is_random=True)
parallel.show_config()
parallel.render()
from pyecharts import Parallel
c_schema = [
{"dim": 0, "name": "data"},
{"dim": 1, "name": "AQI"},
{"dim": 2, "name": "PM2.5"},
{"dim": 3, "name": "PM10"},
{"dim": 4, "name": "CO"},
{"dim": 5, "name": "NO2"},
{"dim": 6, "name": "CO2"},
{"dim": 7, "name": "等级",
"type": "category", "data": ['优', '良', '轻度污染', '中度污染', '重度污染', '严重污染']}
]
data = [
[1, 91, 45, 125, 0.82, 34, 23, "良"],
[2, 65, 27, 78, 0.86, 45, 29, "良"],
[3, 83, 60, 84, 1.09, 73, 27, "良"],
[4, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[5, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[6, 109, 81, 121, 1.28, 68, 51, "轻度污染"],
[7, 106, 77, 114, 1.07, 55, 51, "轻度污染"],
[8, 89, 65, 78, 0.86, 51, 26, "良"],
[9, 53, 33, 47, 0.64, 50, 17, "良"],
[10, 80, 55, 80, 1.01, 75, 24, "良"],
[11, 117, 81, 124, 1.03, 45, 24, "轻度污染"],
[12, 99, 71, 142, 1.1, 62, 42, "良"],
[13, 95, 69, 130, 1.28, 74, 50, "良"],
[14, 116, 87, 131, 1.47, 84, 40, "轻度污染"]
]
parallel = Parallel("平行坐标系-用户自定义指示器")
parallel.config(c_schema=c_schema)
parallel.add("parallel", data)
parallel.show_config()
parallel.render()
Tip: 可配置 lineStyle 参数
Pie(饼图)
饼图主要用于表现不同类目的数据在总和中的占比。每个的弧度表示数据数量的比例。
Pie.add() 方法签名
add(name, attr, value, radius=None, center=None, rosetype=None, **kwargs)
name -> str
图例名称
attr -> list
属性名称
value -> list
属性所对应的值
radius -> list
饼图的半径,数组的第一项是内半径,第二项是外半径,默认为 [0, 75]
默认设置成百分比,相对于容器高宽中较小的一项的一半
center -> list
饼图的中心(圆心)坐标,数组的第一项是横坐标,第二项是纵坐标,默认为 [50, 50]
默认设置成百分比,设置成百分比时第一项是相对于容器宽度,第二项是相对于容器高度
rosetype -> str
是否展示成南丁格尔图,通过半径区分数据大小,有'radius'和'area'两种模式。默认为'radius'
radius:扇区圆心角展现数据的百分比,半径展现数据的大小
area:所有扇区圆心角相同,仅通过半径展现数据大小
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例")
pie.add("", attr, v1, is_label_show=True)
pie.show_config()
pie.render()
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图-圆环图示例", title_pos='center')
pie.add("", attr, v1, radius=[40, 75], label_text_color=None, is_label_show=True,
legend_orient='vertical', legend_pos='left')
pie.show_config()
pie.render()
from pyecharts import Pie
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
v2 = [19, 21, 32, 20, 20, 33]
pie = Pie("饼图-玫瑰图示例", title_pos='center', width=900)
pie.add("商品A", attr, v1, center=[25, 50], is_random=True, radius=[30, 75], rosetype='radius')
pie.add("商品B", attr, v2, center=[75, 50], is_random=True, radius=[30, 75], rosetype='area',
is_legend_show=False, is_label_show=True)
pie.show_config()
pie.render()
Polar(极坐标系)
可以用于散点图和折线图。
Polar.add() 方法签名
add(name, data, angle_data=None, radius_data=None, type='line', symbol_size=4, start_angle=90,
rotate_step=0, boundary_gap=True, clockwise=True, **kwargs)
name -> str
图例名称
data -> [list],包含列表的列表
数据项 [极径,极角 [数据值]]
angle_data -> list
角度类目数据
radius_data -> list
半径类目数据
type -> str
图例类型,有'line', 'scatter', 'effectScatter', 'barAngle', 'barRadius'可选。默认为 'line'
symbol_size -> int
标记图形大小,默认为 4。
start_angle -> int
起始刻度的角度,默认为 90 度,即圆心的正上方。0 度为圆心的正右方
rotate_step -> int
刻度标签旋转的角度,在类目轴的类目标签显示不下的时候可以通过旋转防止标签之间重叠
旋转的角度从 -90 度到 90 度。默认为 0
boundary_gap -> bool
坐标轴两边留白策略
默认为 True,这时候刻度只是作为分隔线,标签和数据点都会在两个刻度之间的带(band)中间
clockwise -> bool
刻度增长是否按顺时针,默认 True
is_stack -> bool
数据堆叠,同个类目轴上系列配置相同的 stack 值可以堆叠放置
axis_range -> list
坐标轴刻度范围。默认值为 [None, None]。
is_angleaxis_show -> bool
是否显示极坐标系的角度轴,默认为 True
is_radiusaxis_show -> bool
是否显示极坐标系的径向轴,默认为 True
from pyecharts import Polar
import random
data = [(i, random.randint(1, 100)) for i in range(101)]
polar = Polar("极坐标系-散点图示例")
polar.add("", data, boundary_gap=False, type='scatter', is_splitline_show=False,
area_color=None, is_axisline_show=True)
polar.show_config()
polar.render()
is_splitline_show -> bool
是否显示分割线,默认为 True
is_axisline_show -> bool
是否显示坐标轴线,默认为 True
area_opacity -> float
填充区域透明度
area_color -> str
填充区域颜色
Tip: 可配置 lineStyle 参数
from pyecharts import Polar
import random
data_1 = [(10, random.randint(1, 100)) for i in range(300)]
data_2 = [(11, random.randint(1, 100)) for i in range(300)]
polar = Polar("极坐标系-散点图示例", width=1200, height=600)
polar.add("", data_1, type='scatter')
polar.add("", data_2, type='scatter')
polar.show_config()
polar.render()
from pyecharts import Polar
import random
data = [(i, random.randint(1, 100)) for i in range(10)]
polar = Polar("极坐标系-动态散点图示例", width=1200, height=600)
polar.add("", data, type='effectScatter', effect_scale=10, effect_period=5)
polar.show_config()
polar.render()
from pyecharts import Polar
radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("A", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("B", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barRadius', is_stack=True)
polar.add("C", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barRadius', is_stack=True)
polar.show_config()
polar.render()
from pyecharts import Polar
radius = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
polar = Polar("极坐标系-堆叠柱状图示例", width=1200, height=600)
polar.add("", [1, 2, 3, 4, 3, 5, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [2, 4, 6, 1, 2, 3, 1], radius_data=radius, type='barAngle', is_stack=True)
polar.add("", [1, 2, 3, 4, 1, 2, 5], radius_data=radius, type='barAngle', is_stack=True)
polar.show_config()
polar.render()
Radar(雷达图)
雷达图主要用于表现多变量的数据。
Radar.add() 方法签名
add(name, value, item_color=None, **kwargs)
name -> list
图例名称
value -> [list],包含列表的列表
数据项。数据中,每一行是一个『数据项』,每一列属于一个『维度』
item_color -> str
指定单图例颜色
Radar.config() 方法签名
config(schema=None, c_schema=None, shape="", rader_text_color="#000", **kwargs):
schema -> list
默认雷达图的指示器,用来指定雷达图中的多个维度,会对数据处理成 {name:xx, value:xx} 的字典
c_schema -> dict
用户自定义雷达图的指示器,用来指定雷达图中的多个维度
name: 指示器名称
min: 指示器最小值
max: 指示器最大值
shape -> str
雷达图绘制类型,有'polygon'(多边形)和'circle'可选
rader_text_color -> str
雷达图数据项字体颜色,默认为'#000'
from pyecharts import Radar
schema = [
("销售", 6500), ("管理", 16000), ("信息技术", 30000), ("客服", 38000), ("研发", 52000), ("市场", 25000)]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
radar = Radar()
radar.config(schema)
radar.add("预算分配", v1, is_splitline=True, is_axisline_show=True)
radar.add("实际开销", v2, label_color=["#4e79a7"], is_area_show=False)
radar.show_config()
radar.render()
is_area_show -> bool
是否显示填充区域
area_opacity -> float
填充区域透明度
area_color -> str
填充区域颜色
is_splitline_show -> bool
是否显示分割线,默认为 True
is_axisline_show -> bool
是否显示坐标轴线,默认为 True
Tip: 可配置 lineStyle 参数
value_bj = [
[55, 9, 56, 0.46, 18, 6, 1], [25, 11, 21, 0.65, 34, 9, 2],
[56, 7, 63, 0.3, 14, 5, 3], [33, 7, 29, 0.33, 16, 6, 4],
[42, 24, 44, 0.76, 40, 16, 5], [82, 58, 90, 1.77, 68, 33, 6],
[74, 49, 77, 1.46, 48, 27, 7], [78, 55, 80, 1.29, 59, 29, 8],
[267, 216, 280, 4.8, 108, 64, 9], [185, 127, 216, 2.52, 61, 27, 10],
[39, 19, 38, 0.57, 31, 15, 11], [41, 11, 40, 0.43, 21, 7, 12],
[64, 38, 74, 1.04, 46, 22, 13], [108, 79, 120, 1.7, 75, 41, 14],
[108, 63, 116, 1.48, 44, 26, 15], [33, 6, 29, 0.34, 13, 5, 16],
[94, 66, 110, 1.54, 62, 31, 17], [186, 142, 192, 3.88, 93, 79, 18],
[57, 31, 54, 0.96, 32, 14, 19], [22, 8, 17, 0.48, 23, 10, 20],
[39, 15, 36, 0.61, 29, 13, 21], [94, 69, 114, 2.08, 73, 39, 22],
[99, 73, 110, 2.43, 76, 48, 23], [31, 12, 30, 0.5, 32, 16, 24],
[42, 27, 43, 1, 53, 22, 25], [154, 117, 157, 3.05, 92, 58, 26],
[234, 185, 230, 4.09, 123, 69, 27],[160, 120, 186, 2.77, 91, 50, 28],
[134, 96, 165, 2.76, 83, 41, 29], [52, 24, 60, 1.03, 50, 21, 30],
]
value_sh = [
[91, 45, 125, 0.82, 34, 23, 1], [65, 27, 78, 0.86, 45, 29, 2],
[83, 60, 84, 1.09, 73, 27, 3], [109, 81, 121, 1.28, 68, 51, 4],
[106, 77, 114, 1.07, 55, 51, 5], [109, 81, 121, 1.28, 68, 51, 6],
[106, 77, 114, 1.07, 55, 51, 7], [89, 65, 78, 0.86, 51, 26, 8],
[53, 33, 47, 0.64, 50, 17, 9], [80, 55, 80, 1.01, 75, 24, 10],
[117, 81, 124, 1.03, 45, 24, 11], [99, 71, 142, 1.1, 62, 42, 12],
[95, 69, 130, 1.28, 74, 50, 13], [116, 87, 131, 1.47, 84, 40, 14],
[108, 80, 121, 1.3, 85, 37, 15], [134, 83, 167, 1.16, 57, 43, 16],
[79, 43, 107, 1.05, 59, 37, 17], [71, 46, 89, 0.86, 64, 25, 18],
[97, 71, 113, 1.17, 88, 31, 19], [84, 57, 91, 0.85, 55, 31, 20],
[87, 63, 101, 0.9, 56, 41, 21], [104, 77, 119, 1.09, 73, 48, 22],
[87, 62, 100, 1, 72, 28, 23], [168, 128, 172, 1.49, 97, 56, 24],
[65, 45, 51, 0.74, 39, 17, 25], [39, 24, 38, 0.61, 47, 17, 26],
[39, 24, 39, 0.59, 50, 19, 27], [93, 68, 96, 1.05, 79, 29, 28],
[188, 143, 197, 1.66, 99, 51, 29], [174, 131, 174, 1.55, 108, 50, 30],
]
c_schema= [{"name": "AQI", "max": 300, "min": 5},
{"name": "PM2.5", "max": 250, "min": 20},
{"name": "PM10", "max": 300, "min": 5},
{"name": "CO", "max": 5},
{"name": "NO2", "max": 200},
{"name": "SO2", "max": 100}]
radar = Radar()
radar.config(c_schema=c_schema, shape='circle')
radar.add("北京", value_bj, item_color="#f9713c", symbol=None)
radar.add("上海", value_sh, item_color="#b3e4a1", symbol=None)
radar.show_config()
radar.render()
Tip: symblo=None 可隐藏标记图形(小圆圈)
Scatter(散点图)
直角坐标系上的散点图可以用来展现数据的 x,y 之间的关系,如果数据项有多个维度,可以用颜色来表现,利用 geo 组件。
Scatter.add() 方法签名
add(name, x_value, y_value, symbol_size=10, **kwargs)
name -> str
图例名称
x_axis -> list
x 坐标轴数据
y_axis -> list
y 坐标轴数据
symbol_size -> int
标记图形大小,默认为 10
from pyecharts import Scatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [10, 20, 30, 40, 50, 60]
scatter = Scatter("散点图示例")
scatter.add("A", v1, v2)
scatter.add("B", v1[::-1], v2)
scatter.show_config()
scatter.render()
Scatter 还内置了画画方法
draw(path, color=None)
'''
将图片上的像素点转换为数组,如 color 为(255,255,255)时只保留非白色像素点的坐标信息
返回两个 k_lst, v_lst 两个列表刚好作为散点图的数据项
'''
path -> str
转换图片的地址
color -> str
所要排除的颜色
首先你需要准备一张图片,如
from pyecharts import Scatter
scatter = Scatter("散点图示例")
v1, v2 = scatter.draw("../images/pyecharts-0.png")
scatter.add("pyecharts", v1, v2, is_random=True)
scatter.show_config()
scatter.render()
WordCloud(词云图)
WordCloud.add() 方法签名
add(name, attr, value, shape="circle", word_gap=20, word_size_range=None, rotate_step=45)
name -> str
图例名称
attr -> list
属性名称
value -> list
属性所对应的值
shape -> list
词云图轮廓,有'circle', 'cardioid', 'diamond', 'triangle-forward', 'triangle', 'pentagon', 'star'可选
word_gap -> int
单词间隔,默认为 20。
word_size_range -> list
单词字体大小范围,默认为 [12, 60]。
rotate_step -> int
旋转单词角度,默认为 45
from pyecharts import WordCloud
name = ['Sam S Club', 'Macys', 'Amy Schumer', 'Jurassic World', 'Charter Communications',
'Chick Fil A', 'Planet Fitness', 'Pitch Perfect', 'Express', 'Home', 'Johnny Depp',
'Lena Dunham', 'Lewis Hamilton', 'KXAN', 'Mary Ellen Mark', 'Farrah Abraham',
'Rita Ora', 'Serena Williams', 'NCAA baseball tournament', 'Point Break']
value = [10000, 6181, 4386, 4055, 2467, 2244, 1898, 1484, 1112, 965, 847, 582, 555,
550, 462, 366, 360, 282, 273, 265]
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.show_config()
wordcloud.render()
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[30, 100], shape='diamond')
wordcloud.show_config()
wordcloud.render()
Tip: 当且仅当 shape 为默认的'circle'时 rotate_step 参数才生效
用户自定义
结合不同类型图表画在一张图上
用户可以自定义结合 Line/Bar/Kline, Scatter/EffectScatter 图表,将不同类型图表画在一张图上。利用第一个图表为基础,往后的数据都将会画在第一个图表上。
需使用 get_series() 和 custom() 方法
get_series()
""" 获取图表的 series 数据 """
custom(series)
''' 追加自定义图表类型 '''
series -> dict
追加图表类型的 series 数据
先用 get_series() 获取数据,再使用 custom() 将图表结合在一起
Line + Bar
from pyecharts import Bar, Line
attr = ['A', 'B', 'C', 'D', 'E', 'F']
v1 = [10, 20, 30, 40, 50, 60]
v2 = [15, 25, 35, 45, 55, 65]
v3 = [38, 28, 58, 48, 78, 68]
bar = Bar("Line - Bar 示例")
bar.add("bar", attr, v1)
line = Line()
line.add("line", v2, v3)
bar.custom(line.get_series())
bar.show_config()
bar.render()
具体流程如下:
初始化图表,正常添加配置项。
调用第一个图表的 custom(type.get_series()) 方法逐个添加。
调用第一个图表的 render() 方法。
Tip: bar.custom(line.get_series()) 这个一定要注意,利用第一个图表为基础。切记不要写成 bar.custom(bar.get_series()) 不然会进入无限地自我调用的状态中,无限递归,最后可能导致死机。
Scatter + EffectScatter
from pyecharts import Scatter, EffectScatter
v1 = [10, 20, 30, 40, 50, 60]
v2 = [30, 30, 30, 30, 30, 30]
v3 = [50, 50, 50, 50, 50, 50]
v4 = [10, 10, 10, 10, 10, 10]
es = EffectScatter("Scatter - EffectScatter 示例")
es.add("es", v1, v2)
scatter = Scatter()
scatter.add("scatter", v1, v3)
es.custom(scatter.get_series())
es_1 = EffectScatter()
es_1.add("es_1", v1, v4, symbol='pin', effect_scale=5)
es.custom(es_1.get_series())
es.show_config()
es.render()
Kline + Line
import random
from pyecharts import Line, Kline
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
attr = ["2017/7/{}".format(i + 1) for i in range(31)]
kline = Kline("Kline - Line 示例")
kline.add("日K", attr, v1)
line_1 = Line()
line_1.add("line-1", attr, [random.randint(2400, 2500) for _ in range(31)])
line_2 = Line()
line_2.add("line-2", attr, [random.randint(2400, 2500) for _ in range(31)])
kline.custom(line_1.get_series())
kline.custom(line_2.get_series())
kline.show_config()
kline.render()
结合不同类型图表画在多张图上,并行显示图表
用户可以自定义结合 Line/Bar/Kline/Scatter/EffectScatter/Pie/HeatMap 图表,将不同类型图表画在多张图上。同样也是要以某一张图表为基础。
需使用 get_series() 和 grid() 方法
get_series()
""" 获取图表的 series 数据 """
grid(series,grid_width, grid_height, grid_top, grid_bottom, grid_left, grid_right)
''' 并行显示图表 '''
series -> dict
追加图表类型的 series 数据
grid_width -> str/int
grid 组件的宽度。默认自适应。
grid_height -> str/int
grid 组件的高度。默认自适应。
grid_top -> str/int
grid 组件离容器顶部的距离。默认为 None, 有'top', 'center', 'middle'可选,也可以为百分数或者整数
grid_bottom -> str/int
grid 组件离容器底部的距离。默认为 None, 有'top', 'center', 'middle'可选,也可以为百分数或者整数
grid_left -> str/int
grid 组件离容器左侧的距离。默认为 None, 有'left', 'center', 'right'可选,也可以为百分数或者整数
grid_right -> str/int
grid 组件离容器右侧的距离。默认为 None, 有'left', 'center', 'right'可选,也可以为百分数或者整数
先用 get_series() 获取数据,再使用 grid() 将图表结合在一起
上下类型,Bar + Line
from pyecharts import Bar, Line
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图示例", height=720, is_grid=True)
bar.add("商家A", attr, v1, is_stack=True, grid_bottom="60%")
bar.add("商家B", attr, v2, is_stack=True, grid_bottom="60%")
line = Line("折线图示例", title_top="50%")
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_top="50%")
bar.grid(line.get_series(), grid_top="60%")
bar.show_config()
bar.render()
再次Tip: bar.grid(line.get_series(), grid_top="60%") 不要写成 bar.grid(bar.get_series()) 不然会陷入无限递归中
具体流程如下:
在第一个图表初始化的时候制定 is_grid=True,说明要使用 grid 组件。
第一个表格的 add() 方法中要制定 grid_* 参数,必须制定,因为 grid_* 默认值都是为 None,不会添加到配置项中。最少指定一个。
初始化其他类型(同类型也可以),不用指定 grid_* 参数。
调用第一个图表的 grid() 方法逐个添加,并且设置 grid_* 参数,必须指定,至少一个。
调用第一个图表的 render() 方法。
左右类型,Scatter + EffectScatter
from pyecharts import Scatter, EffectScatter
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
scatter = Scatter(width=1200, is_grid=True)
scatter.add("散点图示例", v1, v2, grid_left="60%", legend_pos="70%")
es = EffectScatter()
es.add("动态散点图示例", [11, 11, 15, 13, 12, 13, 10], [1, -2, 2, 5, 3, 2, 0],
effect_scale=6, legend_pos="20%")
scatter.grid(es.get_series(), grid_right="60%")
scatter.show_config()
scatter.render()
上下左右类型,Bar + Line + Scatter + EffectScatter
from pyecharts import Bar, Line, Scatter, EffectScatter
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图示例", height=720, width=1200, title_pos="65%", is_grid=True)
bar.add("商家A", attr, v1, is_stack=True, grid_bottom="60%", grid_left="60%")
bar.add("商家B", attr, v2, is_stack=True, grid_bottom="60%", grid_left="60%", legend_pos="80%")
line = Line("折线图示例")
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"], mark_line=["average"])
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_pos="20%")
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
scatter = Scatter("散点图示例", title_top="50%", title_pos="65%")
scatter.add("scatter", v1, v2, legend_top="50%", legend_pos="80%")
es = EffectScatter("动态散点图示例", title_top="50%")
es.add("es", [11, 11, 15, 13, 12, 13, 10], [1, -2, 2, 5, 3, 2, 0], effect_scale=6,
legend_top="50%", legend_pos="20%")
bar.grid(line.get_series(), grid_bottom="60%", grid_right="60%")
bar.grid(scatter.get_series(), grid_top="60%", grid_left="60%")
bar.grid(es.get_series(), grid_top="60%", grid_right="60%")
bar.show_config()
bar.render()
Line + Pie
from pyecharts import Line, Pie
line = Line("折线图示例", width=1200, is_grid=True)
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"],
mark_line=["average"], grid_right="65%")
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_pos="20%")
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [11, 12, 13, 10, 10, 10]
pie = Pie("饼图示例", title_pos="45%")
pie.add("", attr, v1, radius=[30, 55], legend_pos="65%", legend_orient='vertical')
line.grid(pie.get_series(), grid_left="60%")
line.show_config()
line.render()
Line + Kline
from pyecharts import Line, Kline
line = Line("折线图示例", width=1200, is_grid=True)
attr = ['周一', '周二', '周三', '周四', '周五', '周六', '周日']
line.add("最高气温", attr, [11, 11, 15, 13, 12, 13, 10], mark_point=["max", "min"],
mark_line=["average"], grid_right="60%")
line.add("最低气温", attr, [1, -2, 2, 5, 3, 2, 0], mark_point=["max", "min"],
mark_line=["average"], legend_pos="20%", grid_right="60%")
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
value = [20, 40, 60, 80, 100, 120]
v1 = [[2320.26, 2320.26, 2287.3, 2362.94], [2300, 2291.3, 2288.26, 2308.38],
[2295.35, 2346.5, 2295.35, 2345.92], [2347.22, 2358.98, 2337.35, 2363.8],
[2360.75, 2382.48, 2347.89, 2383.76], [2383.43, 2385.42, 2371.23, 2391.82],
[2377.41, 2419.02, 2369.57, 2421.15], [2425.92, 2428.15, 2417.58, 2440.38],
[2411, 2433.13, 2403.3, 2437.42], [2432.68, 2334.48, 2427.7, 2441.73],
[2430.69, 2418.53, 2394.22, 2433.89], [2416.62, 2432.4, 2414.4, 2443.03],
[2441.91, 2421.56, 2418.43, 2444.8], [2420.26, 2382.91, 2373.53, 2427.07],
[2383.49, 2397.18, 2370.61, 2397.94], [2378.82, 2325.95, 2309.17, 2378.82],
[2322.94, 2314.16, 2308.76, 2330.88], [2320.62, 2325.82, 2315.01, 2338.78],
[2313.74, 2293.34, 2289.89, 2340.71], [2297.77, 2313.22, 2292.03, 2324.63],
[2322.32, 2365.59, 2308.92, 2366.16], [2364.54, 2359.51, 2330.86, 2369.65],
[2332.08, 2273.4, 2259.25, 2333.54], [2274.81, 2326.31, 2270.1, 2328.14],
[2333.61, 2347.18, 2321.6, 2351.44], [2340.44, 2324.29, 2304.27, 2352.02],
[2326.42, 2318.61, 2314.59, 2333.67], [2314.68, 2310.59, 2296.58, 2320.96],
[2309.16, 2286.6, 2264.83, 2333.29], [2282.17, 2263.97, 2253.25, 2286.33],
[2255.77, 2270.28, 2253.31, 2276.22]]
kline = Kline("K 线图示例", title_pos="60%")
kline.add("日K", ["2017/7/{}".format(i + 1) for i in range(31)], v1, legend_pos="80%")
line.grid(kline.get_series(), grid_left="55%")
line.show_config()
line.render()
HeatMap + Bar
import random
from pyecharts import HeatMap, Bar
x_axis = ["12a", "1a", "2a", "3a", "4a", "5a", "6a", "7a", "8a", "9a", "10a", "11a",
"12p", "1p", "2p", "3p", "4p", "5p", "6p", "7p", "8p", "9p", "10p", "11p"]
y_aixs = ["Saturday", "Friday", "Thursday", "Wednesday", "Tuesday", "Monday", "Sunday"]
data = [[i, j, random.randint(0, 50)] for i in range(24) for j in range(7)]
heatmap = HeatMap("热力图示例", height=700, is_grid=True)
heatmap.add("热力图直角坐标系", x_axis, y_aixs, data, is_visualmap=True, visual_top="45%",
visual_text_color="#000", visual_orient='horizontal', grid_bottom="60%")
attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"]
v1 = [5, 20, 36, 10, 75, 90]
v2 = [10, 25, 8, 60, 20, 80]
bar = Bar("柱状图示例", title_top="52%")
bar.add("商家A", attr, v1, is_stack=True)
bar.add("商家B", attr, v2, is_stack=True, legend_top="50%")
heatmap.grid(bar.get_series(), grid_top="60%")
heatmap.show_config()
heatmap.render()
Bar 会受 HeatMap 影响,很有趣。
更多示例
欢迎大家补充示例
关于项目
欢迎大家使用 pyecharts
有什么建议或者想法可以开个 issue 讨论,有什么小错误的也可以直接提交 PR。