- 智慧运维与物联网技术在地铁车辆段的应用项目
罗博深
本文还有配套的精品资源,点击获取简介:随着物联网技术的广泛应用,智慧运维系统通过传感器、大数据分析、云计算等技术集成,提升了地铁车辆段的运维效率和安全性。该系统可以实时监控设备状态、预测故障、提供智能决策支持、优化维护策略,并降低运营成本,同时提高乘客安全。其应用拓展至整个地铁线路,乃至与城市交通系统协同,展现了智慧运维对公共交通系统现代化的贡献。1.物联网技术基础与应用物联网(Interneto
- 机器视觉|手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计
RockLiu@805
机器视觉YOLO
手势识别:基于YOLOv5的手部检测与MediaPipe的关键点估计在实时计算机视觉应用中,手部检测与关键点估计是实现手势识别的重要基础。本文将介绍一种基于深度学习的手势识别技术方案,通过结合YOLOv5物体检测网络和MediaPipe关键点检测框架,实现实时的手部定位与关键点提取。技术背景gesturerecognition作为计算机视觉领域的重要研究方向,在HCI(人机交互)、遥控行为分析、虚
- 深入解析LTE-A到5G的系统消息架构与功能演进
罗博深
本文还有配套的精品资源,点击获取简介:系统消息是移动通信网络中,UE与网络间信息交换的核心,涵盖了网络状态、服务信息与系统配置。文章深入分析了4GLTE-A到5G网络中系统消息的组成、作用及其演进,包括MIB和SIBs的功能与内容,以及5G对系统消息的优化和新技术的引入,如动态调度、网络切片和针对物联网设备的特定参数配置。5G系统消息还通过机器学习和大数据分析实现智能化分发,增强了网络灵活性、智能
- 【杨乐昆何凯明AI论文】没有归一化的Transformer模型
东临碣石82
人工智能transformer深度学习
摘要:归一化层在现代神经网络中无处不在,长期以来一直被视为不可或缺的组成部分。本研究表明,通过使用一种极其简单的技术,没有归一化的Transformer模型可以达到相同或更好的性能。我们引入了动态Tanh(DyT),这是一种逐元素操作,表示为DyT(x)=tanh(alphax),作为Transformer中归一化层的即插即用替代品。DyT的灵感来源于这样一个观察:Transformer中的层归一
- 基于深度学习的个性化新闻推荐系统设计与实现计算机毕设
sj52abcd
深度学习课程设计人工智能毕业设计
博主介绍:✌专注于VUE,小程序,安卓,Java,python,物联网专业,有17年开发经验,长年从事毕业指导,项目实战✌选取一个适合的毕业设计题目很重要。✌关注✌私信我✌具体的问题,我会尽力帮助你。研究的背景:随着互联网技术的发展和普及,人们越来越依赖互联网获取信息。然而,随着信息量的不断增加,用户在查找新闻时面临着信息过载的问题。为了解决这个问题,个性化新闻推荐系统被广泛应用。个性化新闻推荐系
- Jetpack LiveData
Bonnie_cat
JetPackandroid
1.什么是LiveData?LiveData是一种可观察的数据持有者,通常用于在Android应用中以生命周期感知的方式更新UI。它是生命周期感知的,意味着它只会通知处于活跃生命周期状态(如STARTED或RESUMED)的观察者。LiveData通常与ViewModel结合使用,用于将UI与数据分离。2.LiveData的使用场景数据驱动UI:当数据发生变化时,自动更新UI,例如从数据库或网络获
- WebRTC中音视频服务质量QoS之RTT衡量网络往返时延的加权平均RTT计算机制详解
chen_song_
WebRTC源码探秘webrtc音视频网络
WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解WebRTC中音视频服务质量QoS之RTT衡量网络往返时延加权平均RTT计算机制的详解前言一、RTT网络往返时延的原理1、基于发送端(SR/RR模式)①.基本定义②.计算RTT网络往返时延的原理③发送Sender
- 深入探究YOLO系列的骨干网路
编码实践
YOLO深度学习计算机视觉
深入探究YOLO系列的骨干网路YOLO系列是目标检测领域中非常知名的算法。其通过将整个图像作为输入,并且直接在图像上通过一个单独的神经网络输出每个检测框的类别预测和边界框信息。为了更好地理解YOLO系列,我们需要先了解它所使用的骨干网路。骨干网络是深度学习模型中的核心部分,负责提取图像的特征。如今常用的骨干网络有VGG、ResNet和MobileNet等。YOLO系列算法采用的是Darknet骨干
- MacOS在matlab中使用dir时,总是出现“._”文件的解决方法
我是水怪的哥
经验分享Matlabmacos经验分享
问题描述:Mac读取文件时出现"._"文件的原因是macOS自动创建隐藏的元数据文件(AppleDouble格式),特别是在文件被复制到非macOS文件系统(如外接硬盘、U盘、网络共享盘)时。(1)为什么会出现"._"文件?(a)macOS会将额外的文件信息(如Finder标签、资源分叉、权限等)存储在"._"文件中。(b)这些文件通常在macOS下是隐藏的,但在MATLAB读取文件时,尤其是在L
- 《Python深度学习》第四讲:计算机视觉中的深度学习
earthzhang2021
2025讲书课专栏python深度学习计算机视觉1024程序员节numpy算法人工智能
计算机视觉是深度学习中最酷的应用之一,它让计算机能够像人类一样“看”和理解图像。想象一下,计算机可以自动识别照片中的物体、人脸,甚至可以读懂交通标志。这一切听起来是不是很神奇?其实,这一切都离不开深度学习中的卷积神经网络(CNN)。今天,我们就来深入了解一下CNN是如何工作的。5.1卷积神经网络简介先来看下卷积神经网络(CNN)是什么。CNN是一种专门用于处理图像数据的神经网络。它的灵感来源于人类
- 《Hello YOLOv8从入门到精通》4, 模型架构和骨干网络Backbone调优实践
Jagua
YOLO
YOLOv8是由Ultralytics开发的最先进的目标检测模型,其模型架构细节包括骨干网络(Backbone)、颈部网络(Neck)和头部网络(Head)三大部分。一、骨干网络(Backbone)Backbone部分负责特征提取,采用了一系列卷积和反卷积层,同时使用了残差连接和瓶颈结构来减小网络的大小并提高性能。YOLOv8的Backbone参考了CSPDarkNet结构,的增强版本,并结合了其
- 华为OD机试 - 核酸检测人员安排 - 动态规划(Python/JS/C/C++ 2024 B卷 200分)
哪 吒
华为od动态规划python
华为OD机试2024E卷题库疯狂收录中,刷题点这里专栏导读本专栏收录于《华为OD机试真题(Python/JS/C/C++)》。刷的越多,抽中的概率越大,私信哪吒,备注华为OD,加入华为OD刷题交流群,每一题都有详细的答题思路、详细的代码注释、3个测试用例、为什么这道题采用XX算法、XX算法的适用场景,发现新题目,随时更新。一、题目描述在系统、网络均正常的情况下组织核酸采样员和志愿者对人群进行核酸检
- element UI 2.15.13和 vue2.0表格勾选回显
前端vue.js
弹窗回显勾选的项关键代码//函数名叫什么无所谓,函数的参数值data是要回显表格的所有数据//数据改变放在this.$nextTick中handleSelection(data){this.$nextTick(()=>{//selectedArr是所有需要勾选的项的集合constselectedArr=data.filter(item=>item.userId);selectedArr.forEa
- CMake Error at myplugins_generated_yololayer.cu.o.Debug,tensorrtx编译失败解决
雪可问春风
BUG人工智能
system:ubuntu1804gpu:3060cuda:cuda11.4tensorrt:8.4使用项目tensorrtx进行yolov5的engine生成,之前在编译成功的配置为system:ubuntu1804gpu:2060cuda:cuda10.2tensorrt:7.2.3.4换到3060后,make失败,报错错误:/home/yfzx/work/vs-work/tensorrt-y
- 如何选择显卡(202408)
=PNZ=BeijingL
操作系统经验分享1024程序员节
(图片来自网络)显卡,也被称为视频卡、图形适配器或GPU(图形处理单元),是电脑中负责渲染图形输出到显示器的关键硬件组件一显卡的基本作用1.图形渲染显卡的主要任务是处理和渲染图形。无论是浏览网页、观看视频还是使用图形设计软件,所有这些操作都需要显卡来计算图形信息,并将其转化为可在屏幕上显示的图像。显卡包含专门设计用于图形处理的芯片,可以快速执行这些操作,从而提供流畅和高质量的视觉体验。2.加速图形
- FastDVDnet:基于深度学习的视频去噪框架
陆可鹃Joey
FastDVDnet:基于深度学习的视频去噪框架项目地址:https://gitcode.com/gh_mirrors/fa/fastdvdnet项目介绍FastDVDnet是一个高效、开源的深度学习模型,专注于视频去噪。该项目由MatteoTassano开发并维护,旨在提供一种快速且有效的解决方案,以消除视频中的噪声,同时保持图像细节和自然纹理。它利用了时间域的连续性和深层神经网络的力量,确保在
- 深度学习 Deep Learning 第2章 线性代数
odoo中国
AI编程人工智能深度学习线性代数人工智能
深度学习第2章线性代数线性代数是深度学习的语言。张量操作是神经网络计算的基石,矩阵乘法是前向传播的核心,范数约束模型复杂度,而生成空间理论揭示模型表达能力的本质。本章介绍线性代数的基本内容,为进一步学习深度学习做准备。主要内容2.1标量、向量、矩阵和张量标量:单个数字,用斜体表示,通常赋予小写字母变量名。向量:数字数组,按顺序排列,用粗体小写字母表示,元素通过下标访问。矩阵:二维数字数组,用粗体大
- DeepSeek-辅助NS3学习和功能调试
wenxin-
学习php开发语言DeepSeekNS3
文章目录一、前言二、DeepSeek回答**1.MAC层替换导致的兼容性问题****可能原因**:**验证方法**:**2.路由表未正确建立****可能原因**:**验证方法**:**3.LR-WPAN物理层限制****可能原因**:**验证方法**:**4.AODV协议配置错误****可能原因**:**验证方法**:**5.网络层与MAC层地址映射问题****可能原因**:**验证方法**:**
- 基于群智能算法的三维无线传感网络覆盖优化数学模型-可以使用群智能算法直接调用进行优化,完整MATLAB代码
算法小狂人
算法应用matlabphp开发语言
1.1三维覆盖模型由于节点随机抛洒,而传感器节点的分布情况会影响网络覆盖率,以RcovR_{\text{cov}}Rcov作为覆盖率评价标准。在三维覆盖区域中,传感器节点的覆盖区域是某一半径确定的球。在三维监测区域中随机抛洒NNN个传感器节点,形成节点集S={s1,s2,s3,⋯ ,sN}S=\{s_1,s_2,s_3,\cdots,s_N\}S={s1,s2,s3,⋯,sN},第iii个节点的坐
- 开博尔支持超高清8K显示HDMI2.1线材评测体验
只你不知
测评文HDMI2.1HDMI2.1高清线8K电视线4K高清线
前言(网络整理):虽然目前没有真正的HDMI2.1的电视机,但是HDMI协会针对HDMI2.1标准做出了临时参数标准和HDMI2.1连接器认证授权,经开博尔技术咨询后得知,开博尔对于HDMI协会当前对HDMI2.1的研产要求均满足,采用定制HDMI2.1认证连接器。HDMI2.0能够实现60FPS的4K图像或30FPS的8K图像。而新的HDMI2.1则可以显示120FPS的4K图像或60FPS的8
- 还不会构建MindIE镜像?一篇文章搞定
Zain Lau
vim编辑器linuxMindIE昇腾
MindIE镜像构建工程项目简介用于构建多平台/架构的MindiE镜像的脚本。用户可以根据需要准备好所需的软件包,修改相关配置并构建镜像。前提条件网络连接在整个构建过程中,必须保持稳定的网络连接。此构建工程依赖于在线下载多个资源,包括但不限于Python源码、编译工具以及各种依赖,无法离线构建。Docker推荐版本:Docker20.10.x及以上最低版本要求:Docker19.03.x安装方式:
- elasticsearch analyzer 学习笔记
weixin_40455124
elasticsearch代码分析及扩展elasticsearchanalyzertoken
基本定义analyzer执行将输入字符流分解为token的过程使用场景在indexing的时候,也即在建立索引的时候在searching的时候,也即在搜索时,分析需要搜索的词语analysisCharacterfiltering(字符过滤器):使用字符过滤器转换字符Breakingtextintotokens(把文字转化为标记):将文本分成一组一个或多个标记Tokenfiltering:使用标记过
- Android StrictMode 使用与原理深度解析
伟江.Zeng
Android基础androidStrictMode性能优化内存泄漏代码规范耗时检测kotlin
AndroidStrictMode是Android系统提供的一种开发者工具,用于检测应用主线程中不合理的耗时操作(如磁盘I/O、网络请求等)和内存泄漏问题。通过配置策略和惩罚机制,它帮助开发者在早期发现潜在性能问题,提升应用流畅性。以下从使用方式和实现原理两方面进行深度解析。一、StrictMode使用详解1.基础配置在Application或Activity的onCreate()中初始化Stri
- PCDN 与边缘计算的结合:未来内容分发的新趋势
yczykjyxgs
pcdn智能路由器
在数字化浪潮中,内容分发面临着前所未有的挑战与机遇。PCDN(P2P内容分发网络)与边缘计算的结合,正逐渐崭露头角,成为未来内容分发的新趋势。PCDN通过P2P技术,利用用户节点的闲置资源进行内容分发,有效减轻了中心服务器的压力,降低了传输成本。然而,在面对实时性要求极高的业务场景时,PCDN仍存在一定局限。边缘计算的出现,为解决这一问题提供了新思路。边缘计算将计算和存储能力下沉到网络边缘,靠近用
- 云计算、边缘计算与雾计算
白小白呀
笔记大数据
云计算(数据上传到云端进行处理)云计算(CloudComputing)是一种基于互联网的计算方式,通过这种方式,共享的软硬件资源和信息可以按需提供给计算机和其他设备。通俗的讲,云是网络、互联网的一种比喻说法,即互联网与建立互联网所需要的底层基础设施的抽象体。“计算”指的是一台足够强大的计算机提供的计算服务(包括各种功能,资源,存储)。“云计算”可以理解为:通过互联网可以使用足够强大的计算机为用户提
- Tornado 初识
Wu_Candy
Web服务器
一、什么是tornadoTornado是使用Python编写的一个强大的、可扩展的Web服务器。它在处理严峻的网络流量时表现得足够强健,但却在创建和编写时有着足够的轻量级,并能够被用在大量的应用和工具中。二、tornado有什么优势Tornado和现在的主流baiduWeb服务器框架(包括大多数Python的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快,得利于其非阻塞的方式和对epol
- SSL 和 TLS 认证
百里自来卷
ssl网络协议网络
SSL(SecureSocketsLayer,安全套接层)认证是一种用于加密网络通信和验证服务器身份的安全技术。它是TLS(TransportLayerSecurity,传输层安全协议)的前身,虽然现在大多数应用使用的是TLS,但仍习惯性地称之为SSL认证。SSL认证SSL认证的核心作用数据加密:防止数据在传输过程中被窃取或篡改,保证机密性。身份验证:验证服务器身份,防止用户连接到伪造的服务器(如
- SSL的原理和应用
m0_74092749
ssl网络协议网络
前言:SSL协议便是Internet上应用最为广泛的网络数据安全传输协议。SSL协议隶属于会话层,处于有连接的会话层之上,它一经产生就在Internet领域发挥了它的巨大作用。目前,国外著名的商用浏览器和Web服务器都支持SSL协议,SSL已成为最流行的WWW安全协议。目前已经有若干国外厂商推出了基于SSL的安全产品,但是协议在核心密码算法上都有出口限制,大多采用一些低安全强度的算法,而且协议代码
- PCDN边缘计算小白入门指南
神鸟云-Hu
边缘计算人工智能
一、PCDN边缘计算简介PCDN是一种基于P2P技术的边缘计算内容分发网络。它通过挖掘和利用边缘网络中的海量碎片化闲置资源,构建出低成本、高品质的内容分发网络服务。通过集成PCDNSDK(软件开发工具包),可以获得与CDN(ContentDeliveryNetwork,内容分发网络)相当或略高的分发质量,同时显著降低分发成本。PCDN适用于视频点播、直播、大文件下载等业务场景,旨在降低客户的分发成
- 【HarmonyOS NEXT 】应用开发:使用@ohos.net.webSocket发送webSocket
纳米小川
HarmonyOSharmonyos.netwebsocket
@ohos.net.webSocket模块可以建立WebSocket连接,实现与服务器之间的实时双向通信。WebSocket提供了一种低延迟的通信方式,非常适合实时应用,如聊天应用、在线游戏等。下面是使用@ohos.net.webSocket模块建立WebSocket连接的步骤:1、添加权限确保在config.json文件中添加了网络访问权限:{"name":"com.example.myappl
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc