全网最详细的Hadoop文章系列,强烈建议收藏加关注!
后面更新文章都会列出历史文章目录,帮助大家回顾知识重点。
目录
本系列历史文章
前言
Hadoop的联邦机制 Federation
背景概述
Federation架构设计
HDFS Federation加高可用
2021年大数据Hadoop(十四):HDFS的高可用机制
2021年大数据Hadoop(十三):HDFS意想不到的其他功能
2021年大数据Hadoop(十二):HDFS的API操作
2021年大数据Hadoop(十一):HDFS的元数据辅助管理
2021年大数据Hadoop(十):HDFS的数据读写流程
2021年大数据Hadoop(九):HDFS的高级使用命令
2021年大数据Hadoop(八):HDFS的Shell命令行使用
2021年大数据Hadoop(七):HDFS分布式文件系统简介
2021年大数据Hadoop(六):全网最详细的Hadoop集群搭建
2021年大数据Hadoop(五):Hadoop架构
2021年大数据Hadoop(四):Hadoop发行版公司
2021年大数据Hadoop(三):Hadoop国内外应用
2021年大数据Hadoop(二):Hadoop发展简史和特性优点
2021年大数据Hadoop(一):Hadoop介绍
2021年全网最详细的大数据笔记,轻松带你从入门到精通,该栏目每天更新,汇总知识分享
单NameNode的架构使得HDFS在集群扩展性和性能上都有潜在的问题,当集群大到一定程度后,NameNode进程使用的内存可能会达到上百G,NameNode成为了性能的瓶颈。因而提出了namenode水平扩展方案-- Federation。
Federation中文意思为联邦,联盟,是NameNode的Federation,也就是会有多个NameNode。多个NameNode的情况意味着有多个namespace(命名空间),区别于HA模式下的多NameNode,它们是拥有着同一个namespace。现有的HDFS数据管理架构,如下图所示:
从上图中,我们可以很明显地看出现有的HDFS数据管理,数据存储2层分层的结构.也就是说,所有关于存储数据的信息和管理是放在NameNode这边,而真实数据的存储则是在各个DataNode下.而这些隶属于同一个NameNode所管理的数据都是在同一个命名空间下的.
一个namespace对应一个block pool。Block Pool是同一个namespace下的block的集合.当然这是我们最常见的单个namespace的情况,也就是一个NameNode管理集群中所有元数据信息的时候.如果我们遇到了之前提到的NameNode内存使用过高的问题,这时候怎么办?元数据空间依然还是在不断增大,一味调高NameNode的jvm大小绝对不是一个持久的办法.这时候就诞生了HDFS Federation的机制.
HDFS Federation是解决namenode内存瓶颈问题的水平横向扩展方案。
Federation意味着在集群中将会有多个namenode和namespace。这些namenode之间是联合的,也就是说,他们之间相互独立且不需要互相协调,各自分工,管理自己的区域。分布式的datanode被用作通用的数据块存储存储设备。每个datanode要向集群中所有的namenode注册,且周期性地向所有namenode发送心跳和块报告,并执行来自所有namenode的命令。
Federation一个典型的例子就是上面提到的NameNode内存过高问题,我们完全可以将上面部分大的文件目录移到另外一个NameNode上做管理.更重要的一点在于,这些NameNode是共享集群中所有的DataNode的,它们还是在同一个集群内的。
这时候在DataNode上就不仅仅存储一个Block Pool下的数据了,而是多个 。
概括起来:
多个NN共用一个集群里的存储资源,每个NN都可以单独对外提供服务。
每个NN都会定义一个存储池(block pool),有单独的id,每个DN都为所有存储池提供存储。
DN会按照存储池id向其对应的NN汇报块信息,同时,DN会向所有NN汇报本地存储可用资源情况。
HDFS Federation并没有完全解决单点故障问题。虽然namenode/namespace存在多个,但是从单个namenode/namespace看,仍然存在单点故障:如果某个namenode挂掉了,其管理的相应的文件便不可以访问。Federation中每个namenode仍然像之前HDFS上实现一样,配有一个secondary namenode,以便主namenode挂掉一下,用于还原元数据信息。
所以一般集群规模真的很大的时候,会采用HA+Federation的部署方案。也就是每个联合的namenodes都是ha的。