给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],…,k[m]。请问k[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入一个数n,意义见题面。(2 <= n <= 60)
输出答案。
输入:8
返回值:18
这是一篇针对初学者的题解,从暴力递归到动态规划一步步讲解。
知识点:递归,动态规划
难度:二星
进入此题的讲解之前,先提出一个问题:什么样的题适合用动态规划?
针对本题来说,假如我们用暴力枚举的思路去思考,会出现以下一些问题:
这段绳子到底应该分几段,才能得到最优的结果?
假设我已经知道了要分m段(假设m已知),那么每段的长度又应该是多少呢?
可能你的问题不止上面2个。但是,仅仅是上面两个问题,已经让我感觉要分好多种情况,然后选出一个最优的。
当然,普通的for循环枚举所有情况是有难度的,但是幸运的是,我们可以用递归回溯。
所以,方法一如下:
暴力递归就要想到递归三部曲:
递归函数的设计和功能:back_track(n); 含义是:求长度为n的数,最后分段后的最大乘积,这里我们不需要关心分成多少段
递归函数的终止条件: 如果n <= 4, 显然back_track(n) = n,初始条件也就是我们不用计算就能得到的。
下一步递归:对于长度n,我们需要减少递归参数n,如果第一段为1, 显然下一步递归为back_track(n-1),如果第一段为2, 则下一步递归为back_track(n-2)…因为要至少分2段,所以,最后一次可能的情况为最后一段为n-1, 下一步递归为back_track(1),因此,每一步可能的结果为1 * back_track(n-1), 2 * back_track(n-2), …, (n-1) * back_track(1),在n-1种情况中取一个最大值即可。 这里我们不用关系back_track(n-1)等的值为多少,因为最终会递归到我们的终止条件,因此绝对是可以求出来。
于是,有了上面三部曲,递归代码如下:
# -*- coding:utf-8 -*-
class Solution:
def cutRope(self, number):
# write code here
if number == 2:
return 1
elif number == 3:
return 2
return self.back_track(number)
def back_track(self,number):
if number <= 4:
return number
res = 0
for i in range(1, number):
res = max(res, i*self.back_track(number-i))
return res
时间复杂度:O(n!)
空间复杂度:O(n), 最多分n段,每段长度为1, 所以递归深度为n
我用f() 替代 back_track(),可知,红色的部分重复了。
因此,我们可以开一个数组,把计算过的结果存起来。
步骤如下:
初始化一个大小为 n+1 的数组,初始值为 -1 , 也可以-2, 反正是不可能得到的值
在方法一的代码上,记录一下,详细代码如下:
# -*- coding:utf-8 -*-
class Solution:
def cutRope(self, number):
# write code here
if number == 2:
return 1
elif number == 3:
return 2
# 添加部分
self.stack = [-1 for _ in range(number+1)]
return self.back_track(number)
def back_track(self,number):
if number <= 4:
return number
# 在方法一的基础上添加
if self.stack[number] != -1:
return self.stack[number]
res = 0
for i in range(1, number):
res = max(res, i*self.back_track(number-i))
# 添加部分
self.stack[number] = res
return self.stack[number]
时间复杂度:O(n^2)
空间复杂度:O(n)
有的书上认为方法二是一种递归版本的动态规划。
所以,我们可以将方法二修改为迭代版本的动态规划。
代码如下:
# -*- coding:utf-8 -*-
class Solution:
def cutRope(self, number):
# write code here
if number == 2:
return 1
elif number == 3:
return 2
stack = [-1 for _ in range(number+1)]
for i in range(4):
stack[i] = i+1
for i in range(5, number+1):
for j in range(1, i):
stack[i] = max(stack[i], j*stack[i-j])
return stack[number-1]
时间复杂度:O(n^2)
空间复杂度:O(n)
总的来说,方法一是基础。方法二,方法三都是在方法一的基础上修改的。
Q:接下来,我们就可以开篇的问题了,什么样的题适合用动态规划?
A:一般,动态规划有以下几种分类:
其实,根据此题的启发,我们可以换种想法,就是什么样的题适合用暴力递归?