鸿蒙内核源码分析(CPU篇) | 内核是如何描述CPU的 ? | 祝新的一年牛气冲天 ! | v32.02

百万汉字注解 >> 精读内核源码,中文注解分析, 深挖地基工程,大脑永久记忆,四大码仓每日同步更新< gitee | github | csdn | coding >

百篇博客分析 >> 故事说内核,问答式导读,生活式比喻,表格化说明,图形化展示,主流站点定期更新中< oschina | csdn | 掘金 | harmony >


鸿蒙内核源码分析(CPU篇) | 内核是如何描述CPU的 ? | 祝新的一年牛气冲天 ! | v32.02_第1张图片

本篇说清楚CPU

读本篇之前建议先读鸿蒙内核源码分析(总目录)进程/线程篇.

cpu是负责执行指令的,谁能给它指令?是线程(也叫任务), 任务是内核的调度单元,调度到哪个任务CPU就去执行哪个任务的指令. 要执行指令就要有个取指令的开始地址. 开始地址就是大家所熟知的main函数.一个程序被加载解析后内核会在ELF中找到main函数的位置,并自动创建一个线程,指定线程的入口地址为main函数的地址,由此开始了取指,译指,执指之路.

多线程内核是怎么处理的? 一样的, 以JAVA举例,对内核来说 new thread中的run() 函数 和 main() 并没有区别. 都是一个线程(任务)的执行入口. 注意在系列篇中反复的说任务就是线程,线程就是任务,它们是一个东西在不同层面上的描述.对应用层说线程,对内核层说任务. 有多少个线程就会有多少个入口,它们统一接受调度算法的调度, 调度算法只认优先级的高低,不会管你是main() 还是 run() 而区别对待.

定时器的实现也是通过任务实现的,只不过是个系统任务OsSwtmrTaskCreate,优先级最高,和入口地址OsSwtmrTask由系统指定.

所以理解CPU就要先理解任务,任务是理解内核的主线,把它搞明白了分析内核就轻轻松松,事半功倍了.看似高深的CPU只不过是搂草打兔子.

不相信?那就看看内核对CPU是怎么描述的吧.本篇就围绕这个结构体展开说.

内核如何描述CPU?

typedef struct {
     //内核对cpu的描述
    SortLinkAttribute taskSortLink;             /* task sort link */	//task wait/delay 排序链表
    SortLinkAttribute swtmrSortLink;            /* swtmr sort link */	//定时器排序链表
    UINT32 idleTaskID;                          /* idle task id */		//空闲任务ID 见于 OsIdleTaskCreate
    UINT32 taskLockCnt;                         /* task lock flag */	//任务锁的数量,当 > 0 的时候,需要重新调度了
    UINT32 swtmrHandlerQueue;                   /* software timer timeout queue id */	//软时钟超时队列句柄
    UINT32 swtmrTaskID;                         /* software timer task id */	//软时钟任务ID
    UINT32 schedFlag;                           /* pending scheduler flag */	//调度标识 INT_NO_RESCH INT_PEND_RESCH
#if (LOSCFG_KERNEL_SMP == YES)
    UINT32 excFlag;                             /* cpu halt or exc flag */	//CPU处于停止或运行的标识
#endif
} Percpu;

结构体不复杂,但很重要,一个一个掰开了说.

  • taskSortLink是干什么用的? 一个任务在运行过程中,会经常会主动或被动中断,而进入等待状态.
    • 主动中断情况, 例如:主动delay300毫秒,这是应用层很常见的操作.

    • 被动中断情况, 例如:申请互斥锁失败,等待某个事件发生 等等.
      发生这些情况时任务将被挂到taskSortLink上.

      鸿蒙内核源码分析(CPU篇) | 内核是如何描述CPU的 ? | 祝新的一年牛气冲天 ! | v32.02_第2张图片

UINT32 OsTaskWait(LOS_DL_LIST *list, UINT32 timeout, BOOL needSched)
{
     
    LosTaskCB *runTask = NULL;
    LOS_DL_LIST *pendObj = NULL;

    runTask = OsCurrTaskGet();//获取当前任务
    OS_TASK_SCHED_QUEUE_DEQUEUE(runTask, OS_PROCESS_STATUS_PEND);//将任务从就绪队列摘除,并变成阻塞状态
    pendObj = &runTask->pendList;
    runTask->taskStatus |= OS_TASK_STATUS_PEND;//给任务贴上阻塞任务标签
    LOS_ListTailInsert(list, pendObj);//将阻塞任务挂到list上,,这步很关键,很重要!
    if (timeout != LOS_WAIT_FOREVER) {
     //非永远等待的时候
        runTask->taskStatus |= OS_TASK_STATUS_PEND_TIME;//阻塞任务再贴上在一段时间内阻塞的标签
        OsAdd2TimerList(runTask, timeout);//把任务加到定时器链表中
    }

    if (needSched == TRUE) {
     //是否需要调度
        OsSchedResched();//申请调度,里面直接切换了任务上下文,至此任务不再往下执行了.
        if (runTask->taskStatus & OS_TASK_STATUS_TIMEOUT) {
     //这条语句是被调度再次选中时执行的,和上面的语句可能隔了很长时间,所以很可能已经超时了
            runTask->taskStatus &= ~OS_TASK_STATUS_TIMEOUT;//如果任务有timeout的标签,那么就去掉那个标签
            return LOS_ERRNO_TSK_TIMEOUT;
        }
    }
    return LOS_OK;
}
LITE_OS_SEC_TEXT STATIC INLINE VOID OsAdd2TimerList(LosTaskCB *taskCB, UINT32 timeOut)
{
     
    SET_SORTLIST_VALUE(&taskCB->sortList, timeOut);//设置idxRollNum的值为timeOut
    OsAdd2SortLink(&OsPercpuGet()->taskSortLink, &taskCB->sortList);//将任务挂到定时器排序链表上
#if (LOSCFG_KERNEL_SMP == YES)//注意:这里的排序不是传统意义上12345的排序,而是根据timeOut的值来决定放到CPU core哪个taskSortLink[0:7]链表上
    taskCB->timerCpu = ArchCurrCpuid();
#endif
}
`OsAdd2SortLink`,将任务挂到排序链表上,因等待时间不一样,所以内核会对这些任务按时间长短排序.
  • 定时器相关三个变量,在系列篇定时器机制篇中已有对定时器的详细描述,可前往查看.
SortLinkAttribute swtmrSortLink;//CPU要处理的定时器链表
UINT32 swtmrHandlerQueue; //队列中放各个定时器的响应函数
UINT32 swtmrTaskID; // 其实就是 OsSwtmrTaskCreate

搞明白定时器的机制只需搞明白: 定时器(SWTMR_CTRL_S),定时任务(swtmrTaskID),定时器响应函数(SwtmrHandlerItem),定时器处理队列swtmrHandlerQueue 四者的关系就可以了.
一句话概括:定时任务swtmrTaskID是个系统任务,优先级最高,它循环读取队列swtmrHandlerQueue中的已到时间的定时器(SWTMR_CTRL_S),并执行定时器对应的响应函数SwtmrHandlerItem.

  • idleTaskID空闲任务,注意这又是个任务,每个cpu核都有属于自己的空闲任务,cpu没事干的时候就待在里面.空闲任务长什么样? Look!
LITE_OS_SEC_TEXT WEAK VOID OsIdleTask(VOID)
{
     
    while (1) {
     //只有一个死循环
    #ifdef LOSCFG_KERNEL_TICKLESS //低功耗模式开关, idle task 中关闭tick
    if (OsTickIrqFlagGet()) {
     
        OsTickIrqFlagSet(0);
        OsTicklessStart();
    }
    #endif
        Wfi();//WFI指令:arm core 立即进入low-power standby state,等待中断,进入休眠模式。
    }
}
一个死循环,只有一条汇编指令`Wfi`. 啥意思?
`WFI`(Wait for interrupt):等待中断到来指令. `WFI`一般用于cpuidle,WFI 指令是在处理器发生中断或类似异常之前不需要做任何事情。具体在[鸿蒙内核源码分析(总目录)](https://my.oschina.net/u/3751245/blog/4626852)自旋锁篇中有详细描述,可前往查看.
  • taskLockCnt 这个很简单,记录等锁的任务数量.任务在运行过程中优先级是会不断地变化的, 例如 高优先级的A任务在等某锁,但持有锁的一方B任务优先级低,这时就会调高B的优先级至少到A的等级,提高B被调度算法命中的概率,如此就能快速的释放锁交给A运行. taskLockCnt记录被CPU运行过的正在等锁的任务数量.

  • schedFlag 调度的标签.

typedef enum {
     
INT_NO_RESCH = 0,   /* no needs to schedule *///不需要调度
INT_PEND_RESCH,     /* pending schedule flag *///阻止调度
} SchedFlag;

调度并不是每次都能成功的,在某些情况下内核会阻止调度进行.例如:OS_INT_ACTIVE硬中断发生的时候.

STATIC INLINE VOID LOS_Schedule(VOID)
{
     
    if (OS_INT_ACTIVE) {
     //发生硬件中断,调度被阻塞
        OsPercpuGet()->schedFlag = INT_PEND_RESCH;//
        return;
    }
    OsSchedPreempt();//抢占式调度
}
  • excFlag标识CPU的运行状态,只在多核CPU下可见.
#if (LOSCFG_KERNEL_SMP == YES)
typedef enum {
     
    CPU_RUNNING = 0,   /* cpu is running */ 	//CPU正在运行状态
    CPU_HALT,          /* cpu in the halt */	//CPU处于暂停状态
    CPU_EXC            /* cpu in the exc */		//CPU处于异常状态
} ExcFlag;
#endif

以上为内核对CPU描述的全貌,不是很复杂.多CPU的协同工作部分在后续篇中介绍.

鸿蒙源码百篇博客 往期回顾

  • v44.03 (中断管理篇) | 硬中断的实现<>观察者模式 < csdn | harmony | 掘金 >

  • v43.03 (中断概念篇) | 外人眼中权势滔天的当红海公公 < csdn | harmony | 掘金 >

  • v42.03 (中断切换篇) | 中断切换到底在切换什么? < csdn | harmony | 掘金 >

  • v41.03 (任务切换篇) | 汇编逐行注解分析任务上下文 < csdn | harmony | 掘金 >

  • v40.03 (汇编汇总篇) | 所有的汇编代码都在这里 < csdn | harmony | 掘金 >

  • v39.03 (异常接管篇) | 社会很单纯,复杂的是人 < csdn | harmony | 掘金 >

  • v38.03 (寄存器篇) | ARM所有寄存器一网打尽,不再神秘 < csdn | harmony | 掘金 >

  • v37.03 (系统调用篇) | 全盘解剖系统调用实现过程 < csdn | harmony | 掘金 >

  • v36.03 (工作模式篇) | CPU是韦小宝,有哪七个老婆? < csdn | harmony | 掘金 >

  • v35.03 (时间管理篇) | Tick是操作系统的基本时间单位 < csdn | harmony | 掘金 >

  • v34.03 (原子操作篇) | 是谁在为原子操作保驾护航? < csdn | harmony | 掘金 >

  • v33.03 (消息队列篇) | 进程间如何异步解耦传递大数据 ? < csdn | harmony | 掘金 >

  • v32.03 (CPU篇) | 内核是如何描述CPU的? < csdn | harmony | 掘金 >

  • v31.03 (定时器篇) | 内核最高优先级任务是谁? < csdn | harmony | 掘金 >

  • v30.03 (事件控制篇) | 任务间多对多的同步方案 < csdn | harmony | 掘金 >

  • v29.03 (信号量篇) | 信号量解决任务同步问题 < csdn | harmony | 掘金 >

  • v28.03 (进程通讯篇) | 进程间通讯有哪九大方式? < csdn | harmony | 掘金 >

  • v27.03 (互斥锁篇) | 互斥锁比自旋锁可丰满许多 < csdn | harmony | 掘金 >

  • v26.03 (自旋锁篇) | 想为自旋锁立贞节牌坊! < csdn | harmony | 掘金 >

  • v25.03 (并发并行篇) | 怎么记住并发并行的区别? < csdn | harmony | 掘金 >

  • v24.03 (进程概念篇) | 进程在管理哪些资源? < csdn | harmony | 掘金 >

  • v23.02 (汇编传参篇) | 汇编如何传递复杂的参数? < csdn | harmony | 掘金 >

  • v22.02 (汇编基础篇) | CPU在哪里打卡上班? < csdn | harmony | 掘金 >

  • v21.02 (线程概念篇) | 是谁在不断的折腾CPU? < csdn | harmony | 掘金 >

  • v20.02 (用栈方式篇) | 栈是构建底层运行的基础 < csdn | harmony | 掘金 >

  • v19.02 (位图管理篇) | 为何进程和线程优先级都是32个? < csdn | harmony | 掘金 >

  • v18.02 (源码结构篇) | 内核500问你能答对多少? < csdn | harmony | 掘金 >

  • v17.02 (物理内存篇) | 这样记伙伴算法永远不会忘 < csdn | harmony | 掘金 >

  • v16.02 (内存规则篇) | 内存管理到底在管什么? < csdn | harmony | 掘金 >

  • v15.02 (内存映射篇) | 什么是内存最重要的实现基础 ? < csdn | harmony | 掘金 >

  • v14.02 (内存汇编篇) | 什么是虚拟内存的实现基础? < csdn | harmony | 掘金 >

  • v13.02 (源码注释篇) | 热爱是所有的理由和答案 < csdn | harmony | 掘金 >

  • v12.02 (内存管理篇) | 虚拟内存全景图是怎样的? < csdn | harmony | 掘金 >

  • v11.02 (内存分配篇) | 内存有哪些分配方式? < csdn | harmony | 掘金 >

  • v10.02 (内存主奴篇) | 紫禁城的主子和奴才如何相处? < csdn | harmony | 掘金 >

  • v09.02 (调度故事篇) | 用故事说内核调度 < csdn | harmony | 掘金 >

  • v08.02 (总目录) | 百万汉字注解 百篇博客分析 < csdn | harmony | 掘金 >

  • v07.02 (调度机制篇) | 任务是如何被调度执行的? < csdn | harmony | 掘金 >

  • v06.02 (调度队列篇) | 就绪队列对调度的作用 < csdn | harmony | 掘金 >

  • v05.02 (任务管理篇) | 谁在让CPU忙忙碌碌? < csdn | harmony | 掘金 >

  • v04.02 (任务调度篇) | 任务是内核调度的单元 < csdn | harmony | 掘金 >

  • v03.02 (时钟任务篇) | 触发调度最大的动力来自哪里? < csdn | harmony | 掘金 >

  • v02.02 (进程管理篇) | 进程是内核资源管理单元 < csdn | harmony | 掘金 >

  • v01.09 (双向链表篇) | 谁是内核最重要结构体? < csdn | harmony | 掘金 >

参与贡献

  • 访问注解仓库地址

  • Fork 本仓库 >> 新建 Feat_xxx 分支 >> 提交代码注解 >> 新建 Pull Request

  • 新建 Issue

喜欢请大方 点赞+关注+收藏 吧

  • 关注「鸿蒙内核源码分析」公众号,百万汉字注解 + 百篇博客分析 => 深挖鸿蒙内核源码

  • 公众号: 鸿蒙内核源码分析

  • 各大站点搜 “鸿蒙内核源码分析” .欢迎转载,请注明出处.

你可能感兴趣的:(鸿蒙内核源码分析,粉丝可见,内核,CPU,鸿蒙源码分析,百万汉字注解,百篇博客分析)