Influxdb中的Compaction操作

Influxdb中的Compaction操作

Compaction概述

  • Influxdb的存储引擎使用了TSM文件结构,这其实也是在LSM-Tree基础针对时序特点作了改进,因此其与LSM-Tree类似,也有MemTable, WAL和SSTable;
  • 既然是类似LSM-Tree,也需要Compation, 将内存MemTable的数据持久化到磁盘,将磁盘上的若干文件merge,以便减少文件个数,优化读效率;
  • Influxdb的Compaction通常来说需要两步:
    1. 生成一个compaction计划,简单来说就是生成一组可以并行compaction的文件列表;
    2. 针对一组tsm文件来作compation;

Compaction计划的生成

CompactionPlanner接口
  • 其实可以使用多种策略来生成这个计划,所谓的计划就是根据特定的规则来获取到一组可以并行作compact的文件组。因此Influxdb首先定义了一个Interface:
type CompactionPlanner interface {
    Plan(lastWrite time.Time) []CompactionGroup
    PlanLevel(level int) []CompactionGroup
    PlanOptimize() []CompactionGroup
    Release(group []CompactionGroup)
    FullyCompacted() bool

    // ForceFull causes the planner to return a full compaction plan the next
    // time Plan() is called if there are files that could be compacted.
    ForceFull()

    SetFileStore(fs *FileStore)
}

Plan,PlanLevel,PlanOptimize返回的都是[]CompactionGroup, 它的类型其实是 [][]string, 即一组可以并行执行Compaction操作的tsm文件路径的列表;

CompactionPlanner的默认实现 - DefaultPlanner
  • 在讲这个DefaultPlanner之前,我们先来看一下一个tsm文件的命名:000001-01.tsm,前面的000001被称为Generation, 后面的01被 称为Sequence number,也被称为Level

  • tsmGeneration类型介绍: 它封装了属同一个Generation的多个TSM文件

type tsmGeneration struct {
    id            int // Generation
    files         []FileStat //包含的tsm文件的信息, 并且这个files是按文件名从小到大排序好的
    parseFileName ParseFileNameFunc //这个函数用来从tsm文件名中解析出Generation和Sequence number
}

因为在compact过程中针对同一个Generation,可以对应有多个不同的sequence,比如 001-001.tsm, 001-002.tsm, 这些都属于同一Generation, 下一次压缩时这两个文件可以被客视为一个大的001-001.tsm文件,这也就是需要这个tsmGeneration的原因

  • PlanLevel: 针对某一level, 抽取出一组tsm文件组, 大概步骤为下:
  1. 根据当前file_store包含的所有tsm文件,将相同generation的文件归于一类,生成tsmGenerations, 这是通过fileGenerations完成的;
  2. 按level将上面得到的所有tsmGeneration分组, 最后得到的分组的成员是按tsmGenerations.Level()从大到小排列的
  3. 按PlanLevel(level int)中的level过滤上面得到的tsmGeneration group
  4. 将上面得到的每个tsmGeneration group中的tsmGeneratons按指定大小分堆,作chunk, 这些分为的堆中的tsm文件按堆可以被并行compact;
  5. 代码有点多,也不太直观,大体上是这个思路;
func (c *DefaultPlanner) PlanLevel(level int) []CompactionGroup {
    ... 
    
    // Determine the generations from all files on disk.  We need to treat
    // a generation conceptually as a single file even though it may be
    // split across several files in sequence.
    // 将相同generation id的tsm文件放在一起
    // generations -> tsmGenerations
    generations := c.findGenerations(true)
    ...
    
    // 按level把tsmGenerations分组
    // 这些分完组后groups中的tsmGenerations的level从大到小排列的
    var currentGen tsmGenerations
    var groups []tsmGenerations
    for i := 0; i < len(generations); i++ {
        cur := generations[i]

        // See if this generation is orphan'd which would prevent it from being further
        // compacted until a final full compactin runs.
        if i < len(generations)-1 {
            if cur.level() < generations[i+1].level() {
                currentGen = append(currentGen, cur)
                continue
            }
        }

        if len(currentGen) == 0 || currentGen.level() == cur.level() {
            currentGen = append(currentGen, cur)
            continue
        }
        groups = append(groups, currentGen)
        currentGen = tsmGenerations{}
        currentGen = append(currentGen, cur)
    }
    if len(currentGen) > 0 {
        groups = append(groups, currentGen)
    }

    // Remove any groups in the wrong level
    // level是这个函数传进来的参数,指明要compact哪一level的file,这里作个过滤
    // cur.level()返回的是这个tmsGeneration中所有fileState中最小的level, 这样作
    // 合适吗?
    var levelGroups []tsmGenerations
    for _, cur := range groups {
        if cur.level() == level {
            levelGroups = append(levelGroups, cur)
        }
    }

    minGenerations := 4
    if level == 1 {
        //对于level至少要有8个文件,才会compact
        minGenerations = 8
    }

    //type CompactionGroup []string
    var cGroups []CompactionGroup
    for _, group := range levelGroups {
        // 将每个tsmGenerations中的tsmGeneration按给定大小分堆
        for _, chunk := range group.chunk(minGenerations) {
            var cGroup CompactionGroup
            var hasTombstones bool
            for _, gen := range chunk {
                if gen.hasTombstones() {
                    hasTombstones = true
                }
                for _, file := range gen.files {
                    //cGroup里存需要被分组compact的file.Path
                    cGroup = append(cGroup, file.Path)
                }
            }

            // 如果当前的chunk里的tsmGeneration数不够minGeneration大小,
            // 需要用下一个chunk来凑够这个数
            // hasTombstones为true, 说明有标记删除的,需要通过 compact 真正删除掉
            if len(chunk) < minGenerations && !hasTombstones {
                continue
            }

            cGroups = append(cGroups, cGroup)
        }
    }

    if !c.acquire(cGroups) {
        return nil
    }
    return cGroups
}
  • Plan(lastWrite time.Time): 针对full compaction或level >= 4的generation产生一组tsm文件组
  1. 代码可以说是又臭又长,规则读起来说实话也不是完全明白;
  2. fullCompaction是有时间间隔的,满足了这个时间间隔,作fullCompaction;而且需要根据一些条件作排除;
  3. 如果不作fullCompaction, 那就只针对generation.level >= 4的 generations生成compaction计划;
  4. 我把代码放在下面,里面有一些注释:
func (c *DefaultPlanner) Plan(lastWrite time.Time) []CompactionGroup {
    generations := c.findGenerations(true)

    for _, v := range generations {
        fmt.Printf("xxx | generations: %v\n", v)
    }

    c.mu.RLock()
    forceFull := c.forceFull
    c.mu.RUnlock()

    // first check if we should be doing a full compaction because nothing has been written in a long time
    // fullCompact是有时间间隔的,这里作判断
    // 这部分处理fullCompact的情况
    if forceFull || c.compactFullWriteColdDuration > 0 && time.Since(lastWrite) > c.compactFullWriteColdDuration && len(generations) > 1 {

        // Reset the full schedule if we planned because of it.
        if forceFull {
            c.mu.Lock()
            c.forceFull = false
            c.mu.Unlock()
        }

        var tsmFiles []string
        var genCount int
        for i, group := range generations {
            var skip bool

            // Skip the file if it's over the max size and contains a full block and it does not have any tombstones
            if len(generations) > 2 && group.size() > uint64(maxTSMFileSize) &&
                c.FileStore.BlockCount(group.files[0].Path, 1) == tsdb.DefaultMaxPointsPerBlock &&
                !group.hasTombstones() {
                skip = true
            }

            // compressed files.
            if i < len(generations)-1 {
                if generations[i+1].level() <= 3 {
                    skip = false
                }
            }

            if skip {
                continue
            }

            for _, f := range group.files {
                tsmFiles = append(tsmFiles, f.Path)
            }
            genCount += 1
        }
        sort.Strings(tsmFiles)

        // Make sure we have more than 1 file and more than 1 generation
        if len(tsmFiles) <= 1 || genCount <= 1 {
            return nil
        }

        group := []CompactionGroup{tsmFiles}
        if !c.acquire(group) {
            return nil
        }
        return group
    }

    // don't plan if nothing has changed in the filestore
    if c.lastPlanCheck.After(c.FileStore.LastModified()) && !generations.hasTombstones() {
        return nil
    }

    c.lastPlanCheck = time.Now()

    // If there is only one generation, return early to avoid re-compacting the same file
    // over and over again.
    if len(generations) <= 1 && !generations.hasTombstones() {
        return nil
    }

    // Need to find the ending point for level 4 files.  They will be the oldest files. We scan
    // each generation in descending break once we see a file less than 4.
    end := 0
    start := 0
    // 这里找到level >= 4的截至点
        // 按现在的plan的规则,这个generations是按gereration id从小到大排列的
    // generation越小的包含的文件越是较老的文件,compact的话优先选取这些文件
    // 如果最小generation包含的文件的level是 < 4的,说明level 4文件还没产生或者是最近刚产生的
    for i, g := range generations {
        if g.level() <= 3 {
            break
        }
        end = i + 1
    }

    // As compactions run, the oldest files get bigger.  We don't want to re-compact them during
    // this planning if they are maxed out so skip over any we see.
    var hasTombstones bool
    for i, g := range generations[:end] {
        if g.hasTombstones() {
            hasTombstones = true
        }

        if hasTombstones {
            continue
        }

        // 下面这部分主要是跳到过大的tsm文件
        // Skip the file if it's over the max size and contains a full block or the generation is split
        // over multiple files.  In the latter case, that would mean the data in the file spilled over
        // the 2GB limit.
        if g.size() > uint64(maxTSMFileSize) &&
            c.FileStore.BlockCount(g.files[0].Path, 1) == tsdb.DefaultMaxPointsPerBlock {
            start = i + 1
        }

        // This is an edge case that can happen after multiple compactions run.  The files at the beginning
        // can become larger faster than ones after them.  We want to skip those really big ones and just
        // compact the smaller ones until they are closer in size.
        if i > 0 {
            if g.size()*2 < generations[i-1].size() {
                start = i
                break
            }
        }
    }

    // step is how may files to compact in a group.  We want to clamp it at 4 but also stil
    // return groups smaller than 4.
    step := 4
    if step > end {
        step = end
    }

    // slice off the generations that we'll examine
    generations = generations[start:end]

    // 下面这些代码主要就是将generations分堆,也就是最后要将tsm文件分堆,以便并行作compaction
    // Loop through the generations in groups of size step and see if we can compact all (or
    // some of them as group)
    groups := []tsmGenerations{}
    for i := 0; i < len(generations); i += step {
        var skipGroup bool
        startIndex := i

        for j := i; j < i+step && j < len(generations); j++ {
            gen := generations[j]
            lvl := gen.level()

            // Skip compacting this group if there happens to be any lower level files in the
            // middle.  These will get picked up by the level compactors.
            if lvl <= 3 {
                fmt.Printf("xxx | lvl <= 3")
                skipGroup = true
                break
            }

            // Skip the file if it's over the max size and it contains a full block
            if gen.size() >= uint64(maxTSMFileSize) && c.FileStore.BlockCount(gen.files[0].Path, 1) == tsdb.DefaultMaxPointsPerBlock && !gen.hasTombstones() {
                startIndex++
                continue
            }
        }

        if skipGroup {
            continue
        }

        endIndex := i + step
        if endIndex > len(generations) {
            endIndex = len(generations)
        }
        if endIndex-startIndex > 0 {
            groups = append(groups, generations[startIndex:endIndex])
        }
    }

    if len(groups) == 0 {
        return nil
    }

    // With the groups, we need to evaluate whether the group as a whole can be compacted
    compactable := []tsmGenerations{}
    for _, group := range groups {
        //if we don't have enough generations to compact, skip it
        if len(group) < 4 && !group.hasTombstones() {
            continue
        }
        compactable = append(compactable, group)
    }

    // All the files to be compacted must be compacted in order.  We need to convert each
    // group to the actual set of files in that group to be compacted.
    var tsmFiles []CompactionGroup
    for _, c := range compactable {
        var cGroup CompactionGroup
        for _, group := range c {
            for _, f := range group.files {
                cGroup = append(cGroup, f.Path)
            }
        }
        sort.Strings(cGroup)
        tsmFiles = append(tsmFiles, cGroup)
    }

    if !c.acquire(tsmFiles) {
        return nil
    }
    return tsmFiles
}
  • 针对这些compaction策略,我将一般情况用张图表明一下,它不能涵盖所有情况,只作为一般性参考:


    Influxdb中的Compaction操作_第1张图片
    5206a8b540ac4adc8a69d980bb9fb523.jpg

Compation的执行

Compactor-Compaction的执行者

两个作用:

  • 将内存的Cache(MemTable)持久化到磁盘TSM文件(SSTable), Influxdb中叫写快照
  • 将磁盘上的多个TSM文件作merge
持久化Cache到TSM文件
Cache回顾
  • 先回顾一下Cache的构成,简单说就是个Key-Value,为了降低读写时锁的竞争,又引入了partiton(桶)的概念,每个partition里又是一个key-value的map;Key通过hash选择一个partition

  • 这里的key是series key + filed, value就是具体的存入influxdb的用户数据


    Influxdb中的Compaction操作_第2张图片
    618da1d984c8d48961950ab9bd681b31.jpg
  • 持久化就是将这些key-value存到磁盘,在存之前还要作encode;

  • 按influxdb代码的一贯写法,这里在写入磁盘时需要一个iterator来遍历所有的key-value

Cache的遍历
  • 上面的这些功能都通过cacheKeyIterator完成, 它提供了按key遍历的功能,并且在遍历前已经对Values(包含value和时间戳)作了列编码;
    1. 这个编译过程会启动多个goroutine并行进行
    2. 针对Cache中的每个key对应的values,都单独编码,结果记录在c.blocks中,Caceh中有几个key,c.blocks中就有几项
    3. 对于同一个key的所有values,也不是统一编码到一块block中,每一个cacheBlock最多容纳c.size个vlaues
func (c *cacheKeyIterator) encode() {
    concurrency := runtime.GOMAXPROCS(0)
    n := len(c.ready)

    // Divide the keyset across each CPU
    chunkSize := 1
    idx := uint64(0)

    // 启动多个goroutine来作encode
    for i := 0; i < concurrency; i++ {
        // Run one goroutine per CPU and encode a section of the key space concurrently
        go func() {
            // 获取Time, Float, Boolean, Unsigned, String, Iterger的编码器
            tenc := getTimeEncoder(tsdb.DefaultMaxPointsPerBlock)
            fenc := getFloatEncoder(tsdb.DefaultMaxPointsPerBlock)
            benc := getBooleanEncoder(tsdb.DefaultMaxPointsPerBlock)
            uenc := getUnsignedEncoder(tsdb.DefaultMaxPointsPerBlock)
            senc := getStringEncoder(tsdb.DefaultMaxPointsPerBlock)
            ienc := getIntegerEncoder(tsdb.DefaultMaxPointsPerBlock)

            defer putTimeEncoder(tenc)
            defer putFloatEncoder(fenc)
            defer putBooleanEncoder(benc)
            defer putUnsignedEncoder(uenc)
            defer putStringEncoder(senc)
            defer putIntegerEncoder(ienc)

            for {
                i := int(atomic.AddUint64(&idx, uint64(chunkSize))) - chunkSize

                if i >= n {
                    break
                }

                key := c.order[i]
                values := c.cache.values(key)

                for len(values) > 0 {

                    //每次最多编码c.size个value
                    end := len(values)
                    if end > c.size {
                        end = c.size
                    }

                    minTime, maxTime := values[0].UnixNano(), values[end-1].UnixNano()
                    var b []byte
                    var err error

                    switch values[0].(type) {
                    case FloatValue:
                        b, err = encodeFloatBlockUsing(nil, values[:end], tenc, fenc)
                    case IntegerValue:
                        b, err = encodeIntegerBlockUsing(nil, values[:end], tenc, ienc)
                    case UnsignedValue:
                        b, err = encodeUnsignedBlockUsing(nil, values[:end], tenc, uenc)
                    case BooleanValue:
                        b, err = encodeBooleanBlockUsing(nil, values[:end], tenc, benc)
                    case StringValue:
                        b, err = encodeStringBlockUsing(nil, values[:end], tenc, senc)
                    default:
                        b, err = Values(values[:end]).Encode(nil)
                    }

                    // 更新values为剩余未编码的
                    values = values[end:]

                    // 每个key对应c.blocks中的一项,里面存储的是cacheBlock
                    c.blocks[i] = append(c.blocks[i], cacheBlock{
                        k:       key,
                        minTime: minTime,
                        maxTime: maxTime,
                        b:       b,
                        err:     err,
                    })

                    if err != nil {
                        c.err = err
                    }
                }
                
                // Notify this key is fully encoded
                // 对于每个key, 如果全部编码完成,就向这个key对应的chan中写入数据,通知其编码完成
                c.ready[i] <- struct{}{}
            }
        }()
    }
}
  • 编码结果的遍历
  1. Next():
func (c *cacheKeyIterator) Next() bool {
   //c.i的初值是 -1, 第一次调用或当前c.blocks[c.i]中已读取完,则下面的if不会进入
   if c.i >= 0 && c.i < len(c.ready) && len(c.blocks[c.i]) > 0 {
       c.blocks[c.i] = c.blocks[c.i][1:]
       if len(c.blocks[c.i]) > 0 {
           return true
       }
   }
   c.i++

   if c.i >= len(c.ready) {
       return false
   }

   // 这里阻塞等待对应的key编码完成
   <-c.ready[c.i]
   return true
}
  1. read读取:
func (c *cacheKeyIterator) Read() ([]byte, int64, int64, []byte, error) {
   // See if snapshot compactions were disabled while we were running.
   select {
   case <-c.interrupt:
       c.err = errCompactionAborted{}
       return nil, 0, 0, nil, c.err
   default:
   }

   blk := c.blocks[c.i][0]
   return blk.k, blk.minTime, blk.maxTime, blk.b, blk.err
}
  • Cache的Compaction操作:
    1. 先根据cache的规模和cache产生的速度确定是否需要作流控和compact的并发度
    2. 根据并发度将Cache分裂成若干个小规模Cache,每个小Cache对应一个goroutine来作compaction
    3. compaction过程是通过遍历相应的cacheKeyIterator来写入文件c.writeNewFiles
    4. 对于每个并发执行的c.writeNewFiles, 都对应不同的Generation, Sequence number都从0开始
// 将Cache的内容写入到 *.tsm.tmp文件中
// cache中value过多的话,会将cache作split成多个cache,并行处理,每个splited cache有自己的generation
func (c *Compactor) WriteSnapshot(cache *Cache) ([]string, error) {
    c.mu.RLock()
    enabled := c.snapshotsEnabled
    intC := c.snapshotsInterrupt
    c.mu.RUnlock()

    if !enabled {
        return nil, errSnapshotsDisabled
    }

    start := time.Now()
    // cache.Count() 返回cache的所有的 value的个数
    card := cache.Count()

    // Enable throttling if we have lower cardinality or snapshots are going fast.
    // 3e6 = 3 x 10的6次方
    // compaction过程是否要作流控
    throttle := card < 3e6 && c.snapshotLatencies.avg() < 15*time.Second

    // Write snapshost concurrently if cardinality is relatively high.
    concurrency := card / 2e6
    if concurrency < 1 {
        concurrency = 1
    }

    // Special case very high cardinality, use max concurrency and don't throttle writes.
    if card >= 3e6 {
        concurrency = 4
        throttle = false
    }

    splits := cache.Split(concurrency)

    type res struct {
        files []string
        err   error
    }

    resC := make(chan res, concurrency)
    for i := 0; i < concurrency; i++ {
        go func(sp *Cache) {
            iter := NewCacheKeyIterator(sp, tsdb.DefaultMaxPointsPerBlock, intC)
            files, err := c.writeNewFiles(c.FileStore.NextGeneration(), 0, nil, iter, throttle)
            resC <- res{files: files, err: err}

        }(splits[i])
    }

    var err error
    files := make([]string, 0, concurrency)
    for i := 0; i < concurrency; i++ {
        result := <-resC
        if result.err != nil {
            err = result.err
        }
        files = append(files, result.files...)
    }

    ... 

    return files, err
}
  • 遍历keyIterator,将编码后的block写入到tsm文件 writeNewFiles
    1. 主要就是调用tsmWriter的方法写入文件
    2. 写入文件时先写具体的block, 再写索引
    3. 文件的大小或block数达到上限时,切下一个文件
func (c *Compactor) writeNewFiles(generation, sequence int, src []string, iter KeyIterator, throttle bool) ([]string, error) {
    // These are the new TSM files written
    var files []string

    for {
        // sequence + 1, 这个sequence其实就是 level
        sequence++

        // 这里写入的文件的命名为 *.tsm.tmp
        // 它在作fullCompact时被重命名为 *.tsm
        fileName := filepath.Join(c.Dir, c.formatFileName(generation, sequence)+"."+TSMFileExtension+"."+TmpTSMFileExtension)

        // Write as much as possible to this file
        // c.write实现了实际的写入操作
        err := c.write(fileName, iter, throttle)

        // We've hit the max file limit and there is more to write.  Create a new file
        // and continue.
        // 写入的文件大小或block数达到上限,就切下一个文件,sequence + 1
        if err == errMaxFileExceeded || err == ErrMaxBlocksExceeded {
            files = append(files, fileName)
            continue
        } else if err == ErrNoValues {
            // ErrNoValues意味着没有有效的value, 只有tombstoned entires, 就不写入文件
            // If the file only contained tombstoned entries, then it would be a 0 length
            // file that we can drop.
            if err := os.RemoveAll(fileName); err != nil {
                return nil, err
            }
            break
        } else if _, ok := err.(errCompactionInProgress); ok {
            // Don't clean up the file as another compaction is using it.  This should not happen as the
            // planner keeps track of which files are assigned to compaction plans now.
            return nil, err
        } else if err != nil {
            // Remove any tmp files we already completed
            for _, f := range files {
                if err := os.RemoveAll(f); err != nil {
                    return nil, err
                }
            }
            // We hit an error and didn't finish the compaction.  Remove the temp file and abort.
            if err := os.RemoveAll(fileName); err != nil {
                return nil, err
            }
            return nil, err
        }

        files = append(files, fileName)
        break
    }

    return files, nil
}
多个tsm文件的compaction
概述

我们先来简单讲一下这个compaction的过程,这类似于归并合并操作,每个tsm文件中的keys在其索引中都是从小到小排序的,compaction时就是将多个文件中的相同key的block合并在一起,再生成新的索引,说起来就是这么简单,但influxdb在实现时为了效率等作了一些额外的策略;

tsmBatchKeyIterator
  • 和上面的Cache的compatcon一样,这里也需要一个Iterator: tsmBatchKeyIterator, 它用来同时遍历多个tsm文件, 这个是compaction过程的精华所在
tsmBatchKeyIterator的遍历
  1. 先将各tsm文件中的第一个key对应的block一一取出
  2. 扫描1中获取到的所有每一个key,确定一个当前最小的key
  3. 从1中获取到的所有block中提取出key等于2中获取的最小key的block,存在k.blocks
  4. 对3中获取的所有block作merge, 主要是按minTime排序,这样基本就完成了一个Next的操作
  5. 具体代码如下,我在里面加了注释
 func (k *tsmBatchKeyIterator) Next() bool {
RETRY:
    // Any merged blocks pending?
    if len(k.merged) > 0 {
        k.merged = k.merged[1:]
        if len(k.merged) > 0 {
            return true
        }
    }

    // Any merged values pending?
    if k.hasMergedValues() {
        k.merge()
        if len(k.merged) > 0 || k.hasMergedValues() {
            return true
        }
    }

    // If we still have blocks from the last read, merge them
    if len(k.blocks) > 0 {
        k.merge()
        if len(k.merged) > 0 || k.hasMergedValues() {
            return true
        }
    }

    // Read the next block from each TSM iterator
    // 读每一个tsm文件,将其第一组block都存到k.buf里,看起来是要合并排序
    // 每个tsm文件对应一个blocks
    // 这个blocks和tsm的index是一样的,是按key从小到大排序的
    for i, v := range k.buf {
        if len(v) != 0 {
            continue
        }

        iter := k.iterators[i]
        if iter.Next() {
            key, minTime, maxTime, typ, _, b, err := iter.Read()
            if err != nil {
                k.err = err
            }

            // This block may have ranges of time removed from it that would
            // reduce the block min and max time.
            // 这个tombstones是[]TimeRange
            tombstones := iter.r.TombstoneRange(key)

            var blk *block
            // k.buf[i]的类型是[]blocks -> [][]block
            // 下面这段逻辑,就是不断向k.buf[i]中append新的bolck
            // 如果k.buf[i]需要扩容,就在append时扩,扩为原有cap的二倍
            if cap(k.buf[i]) > len(k.buf[i]) {
                k.buf[i] = k.buf[i][:len(k.buf[i])+1]
                blk = k.buf[i][len(k.buf[i])-1]
                if blk == nil {
                    blk = &block{}
                    k.buf[i][len(k.buf[i])-1] = blk
                }
            } else {
                blk = &block{}
                k.buf[i] = append(k.buf[i], blk)
            }

            blk.minTime = minTime
            blk.maxTime = maxTime
            blk.key = key
            blk.typ = typ
            blk.b = b
            blk.tombstones = tombstones
            blk.readMin = math.MaxInt64
            blk.readMax = math.MinInt64

            blockKey := key
            // 如果这两个key相等,说明还没有遍历完当前的block
            for bytes.Equal(iter.PeekNext(), blockKey) {
                iter.Next()
                key, minTime, maxTime, typ, _, b, err := iter.Read()
                if err != nil {
                    k.err = err
                }

                tombstones := iter.r.TombstoneRange(key)

                var blk *block
                if cap(k.buf[i]) > len(k.buf[i]) {
                    k.buf[i] = k.buf[i][:len(k.buf[i])+1]
                    blk = k.buf[i][len(k.buf[i])-1]
                    if blk == nil {
                        blk = &block{}
                        k.buf[i][len(k.buf[i])-1] = blk
                    }
                } else {
                    blk = &block{}
                    k.buf[i] = append(k.buf[i], blk)
                }

                blk.minTime = minTime
                blk.maxTime = maxTime
                blk.key = key
                blk.typ = typ
                blk.b = b
                blk.tombstones = tombstones
                blk.readMin = math.MaxInt64
                blk.readMax = math.MinInt64
            }
        }

        if iter.Err() != nil {
            k.err = iter.Err()
        }
    }

    // Each reader could have a different key that it's currently at, need to find
    // the next smallest one to keep the sort ordering.
    // 找出当前最小的key(series key + field)
    // 因为k.buf中的每个blocks都是按key从小到大排好的,
    // 所以这里只需看每个blocks[0]
    var minKey []byte
    var minType byte
    for _, b := range k.buf {
        // block could be nil if the iterator has been exhausted for that file
        if len(b) == 0 {
            continue
        }
        if len(minKey) == 0 || bytes.Compare(b[0].key, minKey) < 0 {
            minKey = b[0].key
            minType = b[0].typ
        }
    }
    k.key = minKey
    k.typ = minType

    // Now we need to find all blocks that match the min key so we can combine and dedupe
    // the blocks if necessary
    // 把key都等于上面获取的minKey的block放到k.blocks中
    for i, b := range k.buf {
        if len(b) == 0 {
            continue
        }
        //b[0]即为当前的k.buf[i][0], 是一个block
        // b是[]block
        if bytes.Equal(b[0].key, k.key) {
            //k.blocks => []block
            // b => []block
            k.blocks = append(k.blocks, b...)
            //k.buf[i]的length被reset为0, 即已有的数据被清掉
            k.buf[i] = k.buf[i][:0]
        }
    }

    if len(k.blocks) == 0 {
        return false
    }

    k.merge()

    // After merging all the values for this key, we might not have any.  (e.g. they were all deleted
    // through many tombstones).  In this case, move on to the next key instead of ending iteration.
    if len(k.merged) == 0 {
        goto RETRY
    }

    return len(k.merged) > 0
}
tsmBtchKeyIterator的合并
  1. 当前需要合并的block都存在k.blocks里,先将其按block.minTime排序;
  2. 判断是否需要去重,如果k.blocks中的block在[minTime, maxTime]上有重叠或者某个block有tombstones,就都需要重构这些block,需要作去重,删除,重排操作, 相当于将所有的block按minTime重新组合排序;
  3. 我们来看下关键代码,里面我添加了一些注释
func (k *tsmBatchKeyIterator) combineFloat(dedup bool) blocks {
    if dedup {
        //实现了按minTime来排序,去重
        for k.mergedFloatValues.Len() < k.size && len(k.blocks) > 0 {
            // 去除已经读取过的block
            for len(k.blocks) > 0 && k.blocks[0].read() {
                k.blocks = k.blocks[1:]
            }

            if len(k.blocks) == 0 {
                break
            }
            first := k.blocks[0]
            minTime := first.minTime
            maxTime := first.maxTime

            // Adjust the min time to the start of any overlapping blocks.
            // 其实i可以从1开始
            // 为了按minTime排序,需要确定一个全局最小范围的[minTime, maxTime]
            for i := 0; i < len(k.blocks); i++ {
                if k.blocks[i].overlapsTimeRange(minTime, maxTime) && !k.blocks[i].read() {
                    if k.blocks[i].minTime < minTime {
                        minTime = k.blocks[i].minTime
                    }

                    // 将最大值减小
                    if k.blocks[i].maxTime > minTime && k.blocks[i].maxTime < maxTime {
                        maxTime = k.blocks[i].maxTime
                    }
                }
            }

            // We have some overlapping blocks so decode all, append in order and then dedup
            // 按上面确定的[minTime, maxTime]在所有的blocks中捞数据
            for i := 0; i < len(k.blocks); i++ {
                if !k.blocks[i].overlapsTimeRange(minTime, maxTime) || k.blocks[i].read() {
                    continue
                }

                var v tsdb.FloatArray
                var err error
                if err = DecodeFloatArrayBlock(k.blocks[i].b, &v); err != nil {
                    k.err = err
                    return nil
                }

                // Remove values we already read
                v.Exclude(k.blocks[i].readMin, k.blocks[i].readMax)

                // Filter out only the values for overlapping block
                // 这个Include是不是可以不用调用
                v.Include(minTime, maxTime)
                if v.Len() > 0 {
                    // Record that we read a subset of the block
                    k.blocks[i].markRead(v.MinTime(), v.MaxTime())
                }

                // Apply each tombstone to the block
                for _, ts := range k.blocks[i].tombstones {
                    v.Exclude(ts.Min, ts.Max)
                }

                k.mergedFloatValues.Merge(&v)
            }
        }

        // Since we combined multiple blocks, we could have more values than we should put into
        // a single block.  We need to chunk them up into groups and re-encode them.
        return k.chunkFloat(nil)
    }
    var i int

    for i < len(k.blocks) {

        // skip this block if it's values were already read
        if k.blocks[i].read() {
            i++
            continue
        }
        // If we this block is already full, just add it as is
        // 遇到一个不full的Block就break, 那如果后续还有full的block怎么办?
        if BlockCount(k.blocks[i].b) >= k.size {
            k.merged = append(k.merged, k.blocks[i])
        } else {
            break
        }
        i++
    }

    if k.fast {
        for i < len(k.blocks) {
            // skip this block if it's values were already read
            if k.blocks[i].read() {
                i++
                continue
            }

            k.merged = append(k.merged, k.blocks[i])
            i++
        }
    }

    // If we only have 1 blocks left, just append it as is and avoid decoding/recoding
    if i == len(k.blocks)-1 {
        if !k.blocks[i].read() {
            k.merged = append(k.merged, k.blocks[i])
        }
        i++
    }

    // The remaining blocks can be combined and we know that they do not overlap and
    // so we can just append each, sort and re-encode.
    for i < len(k.blocks) && k.mergedFloatValues.Len() < k.size {
        if k.blocks[i].read() {
            i++
            continue
        }

        var v tsdb.FloatArray
        if err := DecodeFloatArrayBlock(k.blocks[i].b, &v); err != nil {
            k.err = err
            return nil
        }

        // Apply each tombstone to the block
        for _, ts := range k.blocks[i].tombstones {
            v.Exclude(ts.Min, ts.Max)
        }

        k.blocks[i].markRead(k.blocks[i].minTime, k.blocks[i].maxTime)

        k.mergedFloatValues.Merge(&v)
        i++
    }

    k.blocks = k.blocks[i:]

    return k.chunkFloat(k.merged)
}

你可能感兴趣的:(Influxdb中的Compaction操作)