- Spark数据倾斜的问题
冰火同学
Sparkspark大数据分布式
Spark数据倾斜业务背景Spark数据倾斜表现Spark的数据倾斜,包括SparkStreaming和SparkSQL,表现主要有下面几种:1、Excutorlost,OOM,Shuffle过程出错2、DriverOOM3、单个Excutor执行器一直在运行,整体任务卡在某个阶段不能结束4、正常运行的任务突然失败数据倾斜产生的原因以Spark使用场景为例,我们再做数据计算的时候会涉及类似coun
- 37.索引生命周期管理—kibana 索引配置
大勇任卷舒
ELKelasticsearch大数据bigdata
37.1背景引入索引生命周期管理的一个最重要的目的就是对大量时序数据在es读写操作的性能优化如通过sparkstreaming读取Kafka中的日志实时写入es,这些日志高峰期每天10亿+,每分钟接近100w,希望es能够对单分片超过50g或者30天前的索引进行归档,并能够自动删除90天前的索引这个场景可以通过ILM进行策略配置来实现37.2介绍ES索引生命周期管理分为4个阶段:hot、warm、
- 大数据面试临阵磨枪不知看什么?看这份心理就有底了-大数据常用技术栈常见面试100道题
大模型大数据攻城狮
大数据面试职场和发展面试题数据仓库算法
目录1描述Hadoop的架构和它的主要组件。2MapReduce的工作原理是什么?3什么是YARN,它在Hadoop中扮演什么角色?4Spark和HadoopMapReduce的区别是什么?5如何在Spark中实现数据的持久化?6SparkStreaming的工作原理是什么?7如何优化Spark作业的性能?8描述HBase的架构和它的主要组件。9HBase的读写流程是怎样的?10HBase如何处理
- 如何使用Spark Streaming将数据写入HBase
Java资深爱好者
sparkhbase大数据
在SparkStreaming中将数据写入HBase涉及到几个步骤。以下是一个基本的指南,帮助你理解如何使用SparkStreaming将数据写入HBase。1.环境准备HBase:确保HBase集群已经安装并运行。Spark:确保Spark已经安装,并且Spark版本与HBase的Hadoop版本兼容。HBaseConnectorforSpark:你需要使用HBase的SparkConnecto
- Spark Streaming 容错机制详解
goTsHgo
spark-streaming大数据分布式spark-streaming大数据分布式
SparkStreaming是Spark生态系统中用于处理实时数据流的模块。它通过微批处理(micro-batch)的方式将实时流数据进行分片处理,每个批次的计算本质上是Spark的批处理作业。为了保证数据的准确性和系统的可靠性,SparkStreaming实现了多种容错机制,包括数据恢复、任务失败重试、元数据恢复等。接下来,我们将从底层原理和源代码的角度详细解释SparkStreaming是如何
- 什么容错性以及Spark Streaming如何保证容错性
python资深爱好者
spark大数据分布式
一、容错性的定义容错性是指一个系统在发生故障或崩溃时,能够继续运行并提供一定服务的能力。在网络或系统中,这通常涉及到物理组件损坏或软件失败时系统的持续运行能力。容错系统的关键特性包括负载平衡、集群、冗余、复制和故障转移等。二、SparkStreaming保证容错性的方法SparkStreaming为了保证数据的准确性和系统的可靠性,实现了多种容错机制,主要包括以下几个方面:元数据的容错性:Spar
- spark streaming基础操作
天选之子123
大数据spark大数据分布式
sparkstreaming基础操作一、什么是sparkstreamingSparkStreaming用于流式数据的处理。SparkStreaming使用离散化流(discretized作为抽象表示,叫作DStream。DStream是随时间推移而收到的数据的序列。在内部,每个时间区间收到的数据都作为RDD存在,而DStream是由这些RDD所组成的序列(因此得名“离散化”)。简单来说,DStre
- 案例1.spark和flink分别实现作业配置动态更新案例
wguangliang
Sparkflinkspark大数据分布式flinketl工程师
目录目录一、背景二、解决1.方法1:sparkbroadcast广播变量a.思路b.案例①需求②数据③代码2.方法2:flinkRichSourceFunctiona.思路b.案例①需求②数据③代码④测试验证测试1测试2测试3一、背景在实时作业(如SparkStreaming、Flink等流处理作业)中,通过外部配置管理系统动态修改配置,有以下优点:1.无需重启作业,实现配置热更新好处:实时作业通
- 如何使用Spark Streaming
会探索的小学生
spark大数据分布式
一、什么叫SparkStreaming基于SparkCore,大规模、高吞吐量、容错的实时数据流的处理二、SparkStreaming依赖org.apache.sparkspark-streaming_2.112.1.2三、什么叫DStreamDStream:DiscretizedStream离散流,这是SparkStreaming对内部持续的实时数据流的抽象描述,即我们处理的一个实时数据流,在S
- Spark 任务与 Spark Streaming 任务的差异详解
goTsHgo
spark-streaming分布式大数据sparkstreaming大数据分布式
Spark任务与SparkStreaming任务的主要差异源自于两者的应用场景不同:Spark主要处理静态的大数据集,而SparkStreaming处理的是实时流数据。这些差异体现在任务的调度、执行、容错、数据处理模式等方面。接下来,我们将从底层原理和源代码的角度详细解析Spark任务和SparkStreaming任务的差别。1.任务调度模型差异1.1Spark任务的调度模型Spark的任务调度基
- 4 Spark Streaming
TTXS123456789ABC
#Sparksparkajax大数据
4SparkStreaming一级目录1.整体流程2.数据抽象3.DStream相关操作4.SparkStreaming完成实时需求1)WordCount2)updateStateByKey3)reduceByKeyAndWindow一级目录SparkStreaming是一个基于SparkCore之上的实时计算框架,可以从很多数据源消费数据并对数据进行实时的处理,具有高吞吐量和容错能力强等特点。S
- spark streaming python_Spark入门:Spark Streaming简介(Python版)
weixin_39531582
sparkstreamingpython
SparkStreaming是构建在Spark上的实时计算框架,它扩展了Spark处理大规模流式数据的能力。SparkStreaming可结合批处理和交互查询,适合一些需要对历史数据和实时数据进行结合分析的应用场景。SparkStreaming设计SparkStreaming是Spark的核心组件之一,为Spark提供了可拓展、高吞吐、容错的流计算能力。如下图所示,SparkStreaming可整
- 【spark床头书系列】Spark Streaming 编程权威使用指南
BigDataMLApplication
spark大数据流数据处理#大数据spark大数据分布式
SparkStreaming编程权威使用指南文章目录SparkStreaming编程权威使用指南概述快速示例基本概念链接初始化StreamingContext离散化流(DStreams)输入DStreams和Receivers基本源文件流基于自定义接收器的流作为流的RDD队列高级源自定义源接收器的可靠性在DStreams上的转换操作updateStateByKey操作transform操作窗口操作
- Spark Streaming的背压机制的原理与实现代码及分析
weixin_30777913
spark大数据python
SparkStreaming的背压机制是一种根据JobScheduler反馈的作业执行信息来动态调整Receiver数据接收率的机制。在Spark1.5.0及以上版本中,可以通过设置spark.streaming.backpressure.enabled为true来启用背压机制。当启用背压机制时,SparkStreaming会自动根据系统的处理能力来调整数据的输入速率,从而在流量高峰时保证最大的吞
- 《Spark大数据分析与内存计算》——第三章
阿万古
课程作业spark数据分析大数据
第三章作业及答案快捷查找:Ctrl+F在搜索框中输入题目一.单选题(共17题)1.(单选题)并不是所有企业都能自己产生数据,从而用于决策辅助,而更多的互联网企业如电商等大部分是要靠什么来抓取互联网数据进行分析A.HadoopB.pythonC.SparkD.网路爬虫正确答案:D:网路爬虫;2.(单选题)什么负责即席查询的应用A.MLlibB.SparkStreamingC.GraphXD.Spar
- Spark 组件 GraphX、Streaming
叶域
大数据sparkspark大数据分布式
Spark组件GraphX、Streaming一、SparkGraphX1.1GraphX的主要概念1.2GraphX的核心操作1.3示例代码1.4GraphX的应用场景二、SparkStreaming2.1SparkStreaming的主要概念2.2示例代码2.3SparkStreaming的集成2.4SparkStreaming的应用场景SparkGraphX用于处理图和图并行计算。Graph
- 比较Spark与Flink
傲雪凌霜,松柏长青
大数据后端sparkflink大数据
ApacheSpark和ApacheFlink都是目前非常流行的大数据处理引擎,但它们在架构、处理模式、应用场景等方面有一些显著的区别。下面是二者的对比:1.处理模式Spark:主要支持批处理(BatchProcessing),也能通过SparkStreaming处理流式数据,但SparkStreaming本质上是通过微批(micro-batching)的方式处理流数据,延迟相对较高。SparkS
- pyspark kafka mysql_数据平台实践①——Flume+Kafka+SparkStreaming(pyspark)
weixin_39793638
pysparkkafkamysql
蜻蜓点水Flume——数据采集如果说,爬虫是采集外部数据的常用手段的话,那么,Flume就是采集内部数据的常用手段之一(logstash也是这方面的佼佼者)。下面介绍一下Flume的基本构造。Agent:包含Source、Channel和Sink的主体,它是这3个组件的载体,是组成Flume的数据节点。Event:Flume数据传输的基本单元。Source:用来接收Event,并将Event批量传
- Apache Flink 替换 Spark Stream的架构与实践( bilibili 案例解读)_streamsparkflink加载udf(1)
2401_84165953
程序员flinkspark架构
2.开发架构设计(1)开发架构图:如下图左侧所示。最上层是Saber-Streamer,主要进行作业提交以及API管理。下一层是BSQL层,主要进行SQL的扩展和解析,包括自定义算子和个性算子。再下层是运行时态,下面是引擎层。运行时态主要管理引擎层作业的上下层。bilibili早期使用的引擎是SparkStreaming,后期扩展了Flink,在开发架构中预留了一部分引擎层的扩展。最下层是状态存储
- 大数据秋招面经之spark系列
wq17629260466
大数据spark
文章目录前言spark高频面试题汇总1.spark介绍2.spark分组取TopN方案总结:方案2是最佳方案。3.repartition与coalesce4.spark的oom问题怎么产生的以及解决方案5.storm与flink,sparkstreaming之间的区别6.spark的几种部署方式:7.复习spark的yarn-cluster模式执行流程:8.spark的job提交流程:9.spar
- SparkStreaming业务逻辑处理的一些高级算子
看见我的小熊没
sparkStreamingscalasparkbigdatascala
1、reduceByKey reduceByKey是按key进行计算,操作的数据是每个批次内的数据(一个采集周期),不能跨批次计算。如果需要实现对历史数据的跨批次统计累加,则需要使用updateStateByKey算子或者mapWithState算子。packagecom.sparkscala.streamingimportorg.apache.log4j.{Level,Logger}impor
- Spark与Kafka进行连接
傲雪凌霜,松柏长青
后端大数据sparkkafka
在Java中使用Spark与Kafka进行连接,你可以使用SparkStreaming来处理实时流数据。以下是一个简单的示例,展示了如何使用SparkStreaming从Kafka读取数据并进行处理。1.引入依赖首先,在你的pom.xml文件中添加必要的依赖项(假设你在使用Maven):org.apache.sparkspark-core_2.123.4.0org.apache.sparkspar
- spark streaming优点和缺点
scott_alpha
优点:sparkstreaming会被转化为spark作业执行,由于spark作业依赖DAGScheduler和RDD,所以是粗粒度方式而不是细粒度方式,可以快速处理小批量数据,获得准实时的特性;以spark作业提交和执行,很方便的实现容错机制;DStreaming是在RDD上的抽象,更容易与RDD进行交互操作。需要将流式数据与批数据结合分析的情况下,非常方便。缺点:不可避免的延迟
- kafka消费者重复消费同一个topic
小琳ai
大数据kafka重复消费consumer
我的需求是我有多个消费者,需要重复消费某一个topic。场景是sparkstreaming消费kafka数据在这里sparkstream和kafka都是单节点的集群模式。同时起两个不同的groupid的应用,发现会发生后起来的应用消费不到数据。按理来讲不同的groupid属于不同的消费组,不会相互影响。由于是使用的cdh集成的kafka,不知道cdh里的zookeeper管理kafka的数据存在了
- SparkStreaming结合kafka将offSet保存在redis中
哈哈xxy
bigdatasparkStreamingkafkaoffsetredis
SparkStreaming结合kafka将offSet保存在redis中SparkStreaming结合kafka的两种方式1、SparkStreaming的高级APiCreateDStream,容易发生数据多次读取,官方已经不推荐2、SparkStreaming的低级APicreateDirectStream需要自己保存offset保存方式有两大类,一类是Spark自带的checkpoint(
- Spark Streaming+Kafka整合+offset管理
JiahuiTian
大数据#Spark#Kafkakafkaspark大数据
Kafka0-8Receiver模式和Direct模式都不适合当前版本不适用,本次学习采用Kafka0-10Direct模式,并通过第三方存储zookeeper来手动管理offset目录前言offset管理一个完整的整合代码Demo(Java版)导入相关的Maven依赖创建通过ZK管理Offset的工具类测试类Demo前言SparkStreaming获取Kafka的数据有两种方式:Receiver
- Spark(46) -- SparkStreaming整合kafka数据源
erainm
大数据学习spark
1.回顾Kafka可以看我前面kafka文章核心概念图解Broker:安装Kafka服务的机器就是一个brokerProducer:消息的生产者,负责将数据写入到broker中(push)Consumer:消息的消费者,负责从kafka中拉取数据(pull),老版本的消费者需要依赖zk,新版本的不需要Topic:主题,相当于是数据的一个分类,不同topic存放不同业务的数据--主题:区分业务Rep
- SparkStreaming 如何保证消费Kafka的数据不丢失不重复
K. Bob
SparkSpark
目录SparkStreaming接收Kafka数据的方式有两种:Receiver接收数据和采用Direct方式。(1)一个Receiver效率低,需要开启多个线程,手动合并数据再进行处理,并且Receiver方式为确保零数据丢失,需要开启WAL(预写日志)保证数据安全,这将同步保存所有收到的Kafka数据到HDFS,以便在发生故障时可以恢复所有数据。尽管WAL可以保证数据零丢失,但是不能保证exa
- spark采坑集锦之用kafka作为DStream数据源,并行度问题
方兵兵
spark采坑集锦
在SparkStreaming中作为数据源的Kafka怎样接收多主题发送的数据呢?使用StreamingContext.union方法将多个streaming流合并处理defmain(args:Array[String]):Unit={Logger.getLogger("org.apache.spark").setLevel(Level.ERROR)valconf=newSparkConf().s
- 从零到一建设数据中台 - 关键技术汇总
我码玄黄
数据中台数据挖掘数据分析大数据
一、数据中台关键技术汇总语言框架:Java、Maven、SpringBoot数据分布式采集:Flume、Sqoop、kettle数据分布式存储:HadoopHDFS离线批处理计算:MapReduce、Spark、Flink实时流式计算:Storm/SparkStreaming、Flink批处理消息队列:Kafka查询分析:Hbase、Hive、ClickHouse、Presto搜索引擎:Elast
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l