- 《Natural Actor-Critic》译读笔记
songyuc
笔记
《NaturalActor-Critic》摘要本文提出了一种新型的强化学习架构,即自然演员-评论家(NaturalActor-Critic)。Theactor的更新通过使用Amari的自然梯度方法进行策略梯度的随机估计来实现,而评论家则通过线性回归同时获得自然策略梯度和价值函数的附加参数。本文展示了使用自然策略梯度的actor改进特别有吸引力,因为这些梯度与所选策略表示的坐标框架无关,并且比常规策
- 【贪心算法2】
m0_46150269
贪心算法算法
力扣122.买卖股票最佳时机Ⅱ链接:link思路要求最大利润,可以分解成子问题求解,在最低价格买入,最高价格卖出。假如第0天价格最低,第3天价格最高,利润=prices[3]-pricnes[0],可以将利润公式拆解成(prices[3]-prices[2])+(prices[2]-prices[1])+(prices[1]-prices[0])最终变成了求相邻两天的利润,所以可以得到一个关于利润
- 基于PyTorch的深度学习——机器学习3
Wis4e
深度学习机器学习pytorch
激活函数在神经网络中作用有很多,主要作用是给神经网络提供非线性建模能力。如果没有激活函数,那么再多层的神经网络也只能处理线性可分问题。在搭建神经网络时,如何选择激活函数?如果搭建的神经网络层数不多,选择sigmoid、tanh、relu、softmax都可以;而如果搭建的网络层次较多,那就需要小心,选择不当就可导致梯度消失问题。此时一般不宜选择sigmoid、tanh激活函数,因它们的导数都小于1
- python贪心算法几个经典例子_贪心算法经典例子
weixin_39637979
一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。贪心算法的基本思路如下:1.建立数学模型来描述问题。2.把求解的问题分成若干个子问题。3.对每个子问题求解,得到每个子问题的局
- python贪心算法几个经典例子_贪心算法及几个经典例子
weixin_39786850
一、定义什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。贪心算法的基本思路如下:1.建立数学模型来描述问题。2.把求解的问题分成若干个子问题。3.对每个子问题求解,得到每个子问题的局
- 贪心算法
tzc_fly
白景屹-算法栈贪心算法
贪心算法框架贪心算法(greedyalgorithm)是一个容易想象但难以证明的算法,算法框架包括:可选对象集合S,S是全集;已选对象集合T;判断解是否合法的函数isValid(T);评价解的函数payoff(T);目标:从S中选出T,使isValid(T)为True,同时,满足payoff(T)最大;做法:从空集开始,每次增加一个元素使当前payoff最大最后求解完成需要验证是不是全局最优贪心算
- 贪心算法及几个经典例子
G11176593
贪心算法算法动态规划
贪心算法一、基本概念:所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。必须注意的是,贪心算法不是对所有问题都能得到整体最优解,选择的贪心策略必须具备无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。所以对所采用的贪心策略一定要仔细
- 神经网络中梯度计算求和公式求导问题
serve the people
日常琐问神经网络机器学习算法
以下是公式一推导出公式二的过程。表达式一∂E∂wjk=−2(tk−ok)⋅sigmoid(∑jwjk⋅oj)⋅(1−sigmoid(∑jwjk⋅oj))⋅∂∂wjk(∑jwjk⋅oj)\frac{\partialE}{\partialw_{jk}}=-2(t_k-o_k)\cdot\text{sigmoid}\left(\sum_jw_{jk}\cdoto_j\right)\cdot(1-\tex
- 贪心算法解题框架+经典反例分析,效率提升300%
Reese_Cool
洛谷贪心算法算法c++蓝桥杯
贪心算法是一种在每一步选择中都采取当前状态下的最优决策,从而希望最终达到全局最优解的算法策略。以下从其定义、特点、一般步骤、应用场景及实例等方面进行讲解:定义与基本思想•贪心算法在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,它所做出的仅仅是在某种意义上的局部最优解。它通常以自顶向下的方式进行,每一步都选择当前的最优解,而不考虑之前或之后的步骤。特点•无后效性:即
- XGBClassifiler函数介绍
浊酒南街
#算法机器学习XGB
目录前言函数介绍示例前言XGBClassifier是XGBoost库中用于分类任务的类。XGBoost是一种高效且灵活的梯度提升决策树(GBDT)实现,它在多种机器学习竞赛中表现出色,尤其擅长处理表格数据。函数介绍XGBClassifiler(max_depth=3,learning_rate=0.1,n_estimators=100,objective='binary:logistic',boo
- Python编程常用的36个经典案例
编程阿布
pythonwindows开发语言
Python的简洁和强大使其成为许多开发者的首选语言。本文将介绍36个常用的Python经典代码案例。这些示例覆盖了基础语法、常见任务、以及一些高级功能。1.列表推导式fizz_buzz_list=["FizzBuzz"ifi%15==0else"Fizz"ifi%3==0else"Buzz"ifi%5==0elseiforiinrange(1,101)]print(fizz_buzz_list)
- 【深度学习】Adam(Adaptive Moment Estimation)优化算法
辰尘_星启
机器学习--深度学习深度学习算法人工智能Adampytorchpython
概述Adam算法结合了动量法(Momentum)和RMSProp的思想,能够自适应调整每个参数的学习率。通过动态调整每个参数的学习率,在非平稳目标(如深度神经网络的损失函数)中表现优异目录基本原理和公式笼统说明:为什么Adam算法可以帮助模型找到更好的参数基本概念动量(Momentum):跟踪梯度的指数衰减平均(一阶矩),加速收敛并减少震荡。自适应学习率:跟踪梯度平方的指数衰减平均(二阶矩),调整
- 算法与竞赛(第7章) - C++与STL基础三:队列以及优先队列的应用
Ssaty.
算法c++动态规划
第1关:STL模板之queue实例一:最少个数本关任务:给定N个非负整数,求解至少需要选多少个连续的数,它们的和不小于给定的整数S,特别的,若没有解,则输出0。//请在这里补充代码,完成本关任务/*********Begin*********/intn;ints;queueque;intans=
- QwQ-32B通用能力测评的详细分析
大势下的牛马
搭建本地gptQwQQwQ-32BRAG人工智能知识库
QwQ-32B通用能力测评的详细分析一、测评框架与核心基准测试QwQ-32B的通用能力测评围绕三大核心评测体系展开,覆盖逻辑推理、多轮对话、复杂指令遵循、工具调用等综合能力:LiveBench(“最难LLMs评测榜”)设计方:Meta首席科学家YannLeCun团队主导构建任务类型:数学证明:需完成包含多步推导的几何/代数证明题(如"证明存在无限多个素数")逻辑谜题:例如"三个箱子标签全错,如何通
- 【2020蓝桥杯省赛“蛇形填数“python实现】纯暴力规律求解
自由之翼explore
蓝桥杯python职场和发展算法
原题如下在网上找的python解答都让我云里雾里的,无奈自己太笨,于是乎开始寻找这个问题的简单规律,最后倒确实找到了:(我先用MatLab生成了一个蛇形矩阵,这段代码是在CSDN上找的)%Zigzagscanningn=8;a=zeros(n);%初始化a(1,1)=1;i=1;%行j=1;%列f=0;%标志位1表示行增加列减小k=2;%循环赋值从左上角开始循环while(kn^2)break;e
- 深度学习笔记——Resnet和迁移学习
肆——
深度学习深度学习笔记迁移学习
1.ResNet的提出深度学习与网络深度的挑战:在深度学习中,网络的“深度”(即层数)通常与模型的能力成正比。然而,随着网络深度的增加,一些问题也随之出现,最突出的是梯度消失/爆炸问题。这使得深层网络难以训练。梯度消失:梯度消失是指在训练深度神经网络时,通过多层传递的梯度(误差)变得非常小,接近于零。这导致网络中较早层的权重更新非常缓慢,甚至几乎不更新。梯度爆炸:梯度爆炸是指在训练深度神经网络时,
- L2-031 深入虎穴 (25 分) PTA GPLT 天梯题目集 记忆数组+以尾顶点向上递归求解 C/C++ 题解
陈一啊
天梯
一、题目L2-031深入虎穴(25分)著名的王牌间谍007需要执行一次任务,获取敌方的机密情报。已知情报藏在一个地下迷宫里,迷宫只有一个入口,里面有很多条通路,每条路通向一扇门。每一扇门背后或者是一个房间,或者又有很多条路,同样是每条路通向一扇门……他的手里有一张表格,是其他间谍帮他收集到的情报,他们记下了每扇门的编号,以及这扇门背后的每一条通路所到达的门的编号。007发现不存在两条路通向同一扇门
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- 基于PyTorch的深度学习4——使用numpy实现机器学习vs使用Tensor及Antograd实现机器学习
Wis4e
深度学习机器学习pytorch
首先,给出一个数组x,然后基于表达式y=3x2+2,加上一些噪音数据到达另一组数据y。然后,构建一个机器学习模型,学习表达式y=wx2+b的两个参数w、b。利用数组x,y的数据为训练数据。最后,采用梯度梯度下降法,通过多次迭代,学习到w、b的值。以下为具体步骤:1)导入需要的库。importnumpyasnp%matplotlibinlinefrommatplotlibimportpyplotas
- Pytorch 第九回:卷积神经网络——ResNet模型
Start_Present
pytorchcnnpython分类深度学习
Pytorch第九回:卷积神经网络——ResNet模型本次开启深度学习第九回,基于Pytorch的ResNet卷积神经网络模型。这是分享的第四个卷积神经网络模型。该模型是基于解决因网络加深而出现的梯度消失和网络退化而进行设计的。接下来给大家分享具体思路。本次学习,借助的平台是PyCharm2024.1.3,python版本3.11numpy版本是1.26.4,pytorch版本2.0.0+cu11
- 支持向量机——SVM
big_matster
周志华机器学习支持向量机算法
支持向量机支持向量机是一种经典的二分类模型,基本模型定义为特征空间中的最大间隔的线性分类器,其学习的优化目标便是间隔最大化,因此,支持向量机本身可以转换一个凸二次规划求解问题。函数间隔和几何间隔对于二分类学习,假设现在的数据是线性可分的,这时分类学习最基本的想法就是找到一个合理的超平面,该超平面能够将不同类别的样本分开,类似于二维平面使用ax+by+c=0ax+by+c=0ax+by+c=0来表示
- C++ 滑动窗口
不知道取啥耶
c++算法leetcode数据结构
前言C++中滑动窗口分两种,一种是给定窗口长度,还有一种是不定长窗口长度。本篇文章主要讲解这两种状态的滑动窗口,结合例题让读者更好的理解一、给定窗口长度K一般的,对于给定窗口长度的题,通常要求我们对窗口内的元素进行一些操作,解决一些问题,具体问题具体分析。给定窗口长度的题目通常要求解决以下问题:找到每个窗口内的最大值或最小值。计算每个窗口的和或平均值。统计满足条件的子数组数量。找到满足条件的最长或
- 给求职者的建议:软件工程师
追寻向上
pythonjavac语言软件工程
一、编程基础:构建核心能力语言选择与学习首推Python:语法简洁,适合入门。推荐书籍《Python编程:从入门到实践》,重点掌握列表推导、装饰器、文件操作。Java/C++进阶:理解内存管理(如JVM垃圾回收)、多线程编程(synchronized关键字)。推荐《Java核心技术卷Ⅰ》。辅助语言:JavaScript(必学)、Go或Rust(扩展视野)。数据结构与算法基础必刷:数组、链表、哈希表
- C++11新特性:详解auto关键字
R6bandito_
C++新特性c++开发语言c语言visualstudio程序人生经验分享其他
目录引言对auto做出改变的意义C++11之前的autoC++11之后的auto类型的推导auto的优势auto的使用注意事项引言博主:R6bandito_所属专栏:C++新特性在C++11中,引入了不少令人惊喜的功能。其中不乏对类中与类间构造关系的改善(详见《C++11新特性:详解委托构造与继承构造》),以及对于多态性检查机制的完善(详见《C++11新特性:final与override关键字》)
- PyTorch 学习路线
gorgor在码农
#python入门基础pythonpytorch
学习PyTorch需要结合理论理解和实践编码,逐步掌握其核心功能和实际应用。以下是分阶段的学习路径和资源推荐,适合从入门到进阶:1.基础知识准备前提条件Python基础:熟悉Python语法(变量、函数、类、模块等)。数学基础:了解线性代数、微积分、概率论(深度学习的基础)。机器学习基础:理解神经网络、损失函数、优化器(如梯度下降)等概念。学习资源Python入门:Python官方教程机器学习基础
- PyTorch:Python深度学习框架使用详解
零 度°
pythonpython深度学习pytorch
PyTorch是一个开源的机器学习库,广泛用于计算机视觉和自然语言处理领域。它由Facebook的AI研究团队开发,因其动态计算图、易用性以及与Python的紧密集成而受到开发者的青睐。PyTorch的主要特点动态计算图:PyTorch的计算图在运行时构建,使得模型的修改和调试更加灵活。自动微分:自动计算梯度,简化了机器学习模型的训练过程。丰富的API:提供了丰富的神经网络层、函数和损失函数。跨平
- 1.3 最优化的基本概念
西瓜毛毛猫
最优化算法
系统分类一般来说,最优化算法研究可以分为:构造最优化模型、确定最优化问题的类型与设计算法、实现算法或调用优化算法软件包进行求解。最优化模型的构造与实际问题息息相关。打个比方,给定二维欧几里得空间的若干个分离点,假定它们可以通过一条直线分成两部分,也可以通过一条曲线分成两部分。那么分别使用直线和曲线所得到的最优化模型是不同的。在前文的问题中,目标函数与约束函数都是由模型来决定的。在确定模型后,我们再
- 【python】【conda】【Commands 命令5】【conda install】在指定的conda环境中安装一组软件包
资源存储库
windows服务器
目录1condainstall2PositionalArguments位置参数3NamedArguments命名参数4TargetEnvironmentSpecification4目标环境规范编号5ChannelCustomization5渠道定制6SolverModeModifiers6求解器模式修改器7PackageLinkingandInstall-timeOptions7软件包链接和安装时
- PyTorch系列教程:编写高效模型训练流程
梦想画家
人工智能#pythonpytorch人工智能python
当使用PyTorch开发机器学习模型时,建立一个有效的训练循环是至关重要的。这个过程包括组织和执行对数据、参数和计算资源的操作序列。让我们深入了解关键组件,并演示如何构建一个精细的训练循环流程,有效地处理数据处理,向前和向后传递以及参数更新。模型训练流程PyTorch训练循环流程通常包括:加载数据批量处理执行正向传播计算损失反向传播更新权重一个典型的训练流程将这些步骤合并到一个迭代过程中,在数据集
- 搜广推校招面经三十八
Y1nhl
搜广推面经算法pytorch推荐算法搜索算法机器学习
字节推荐算法一、场景题:在抖音场景下为用户推荐广告词,吸引用户点击搜索,呈现广告这一流程的关键点以及可能遇到的困难。二、Transformer中对梯度消失或者梯度爆炸的处理在Transformer模型中,梯度消失和梯度爆炸是深度学习中常见的问题,尤其是在处理长序列数据时。为了克服这些问题,Transformer采用了一系列技术:2.1.残差连接(ResidualConnections)每个子层(包
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round