- A800架构设计与实战
智能计算研究中心
其他
内容概要《A800架构设计与实战》围绕新一代计算架构的技术演进与工程落地展开系统性论述。全书以分布式运算优化原理为切入点,通过对核心模块的层级化拆解,深入剖析多节点协同计算中的资源分配、任务调度及通信瓶颈突破方法。为强化理论与实践的结合,书中引入智能制造与云渲染两大典型场景的完整案例,覆盖从需求分析、架构设计到性能调优的全生命周期。技术维度实现路径应用价值架构设计核心模块拆分与重组降低系统耦合度分
- 《今日AI-人工智能-编程日报》
小亦工作室
人工智能
1.AI行业动态1.1Manus通用智能体初成型,开启AIAgent新时代中泰证券发布研报称,首款通用型AI智能体Manus已问世,能够将复杂任务拆解为可执行的步骤链,并在虚拟环境中灵活调用工具,标志着AI从“Reasoner”走向“Agent”阶段。Manus的成功引发了开源复现潮,DeepSeek模型已被整合到OWL项目中,并在GAIA基准测试中表现接近Manus。1.2DeepSeek-R2
- Git:Git高级特性:钩子与自定义脚本_2024-07-17_20-40-39.Tex
chenjj4003
游戏开发gitelasticsearch大数据搜索引擎javaservlet全文检索
Git:Git高级特性:钩子与自定义脚本Git钩子简介Git钩子的基本概念Git钩子(Hooks)是Git提供的一种自动化脚本执行机制,允许你在Git的特定事件(如提交、合并、推送等)发生时运行自定义脚本。钩子脚本可以用来执行各种任务,如数据验证、环境准备、自动构建等,从而增强Git的功能,提高开发效率和代码质量。钩子的目录结构Git钩子脚本位于仓库的.git/hooks目录下。这个目录包含了多个
- 2024年最佳Todo清单APP:从效率到协作全覆盖
任务管理工具todolist
大量研究表明,人类大脑并不擅长同时处理多项任务。在多任务处理时,大脑需要频繁切换注意力,每次切换都会消耗时间和精力,这种现象被称为“切换成本”(SwitchingCost)。心理学家Rubinstein、Meyer和Evans在2001年的研究中指出,任务切换会导致思维停顿,延长完成任务的时间。他们发现,在处理复杂任务时,效率可能下降高达40%。此外,Cowen(2001)的研究进一步指出,人类的
- 从零到一:Transformer模型的原理与实战之旅
樽酒ﻬق
AItransformer深度学习人工智能
目录从零到一:Transformer模型的原理与实战之旅1.Transformer原理简介1.1什么是Transformer?1.2自注意力机制的核心1.3Transformer的结构2.实战:构建Transformer模型2.1任务目标2.2环境准备2.3数据准备2.4模型构建2.5模型训练3.推理实战:完整示例与输出结果3.1完整推理代码3.2代码解析4.原理与代码的结合4.1自注意力机制的实
- 边缘计算(Edge Computing)
Dream Algorithm
边缘计算人工智能
边缘计算(EdgeComputing)是一种分布式计算范式,它将数据处理和存储功能从传统的集中式云端转移到靠近数据源的网络边缘设备(如路由器、网关、本地服务器或终端设备)。边缘计算的目标是减少数据传输延迟、降低带宽压力,并提高系统的实时性和可靠性。边缘计算的核心概念靠近数据源边缘计算将计算资源部署在靠近数据生成的地方,而不是将所有数据发送到远程云端处理。分布式架构边缘计算采用分布式架构,将计算任务
- 深入解析:构建高效单页应用(SPA)的最佳实践与示例
布兰妮甜
#Vue单页应用SPAVue.js前端
文章目录前言一、单页应用(SPA)的介绍二、单页应用(SPA)的优势三、构建单页应用(SPA)的基本步骤四、使用Vue.js构建一个简易的单页应用(SPA):任务管理器结语前言随着互联网技术的发展,用户对于网页应用的交互性和响应速度提出了更高的要求。传统的多页面应用(MPA)在每次用户交互时需要重新加载整个页面,这不仅增加了服务器的负担,也降低了用户体验。而单页应用(SinglePageAppli
- 软考高级架构师/分析师论文【论基于架构的软件设计方法/ABSD】
saikey0379
架构软考高级论文系统架构设计师系统分析师计算机软件资格考试ABSD
一、摘要 2020年4月,某互联网公司开始了基础架构管理平台项目的实施,该项目主要为基础架构团队提供基础设施、中间件、负载均衡、任务管理等功能,我作为该项目的架构师,主要负责架构设计、架构评估等工作。本文以该项目为例,主要论述基于架构的软件设计方法在该项目中的具体应用与实现效果。在架构需求阶段,通过访谈、原型、JRP等方式获得了系统需求,并在标识构件后完成了需求评审。在架构设计阶段,对架构进行了
- 打造专业海报,不再难!5款AI绘画工具助你轻松生成
Ai工具分享
AI作画
在过去,不会PS却想要制作一张拿得出手的海报,那简直是一项艰巨无比的任务。但新增使用AI绘画功能,稍等一会就能生成1-4张设计感不错的成品营销海报。只需输入一句需求,即可轻松完成。下面小编就来给大家分享3款这种神奇的AI设计工具。一、牛学长图片修复工具在众多AI生图工具中,牛学长图片修复工具凭借其强大的AI技术和用户友好的界面设计脱颖而出。该工具的AI图片生成功能,不仅支持一键生成高质量图像,还特
- 一文搞懂MCU和SoC的核心差异:从架构到应用场景全解析
Electron-er
单片机架构嵌入式硬件
目录引言一、从“芯片大脑”看本质:架构设计的哲学差异1.MCU:单一任务的执行专家2.SoC:系统级集成的超级平台二、实战对比:六大维度拆解差异1.性能指标对比2.开发模式对比三、选型指南:如何选择MCU或SoC?1.选择MCU的场景2.选择SoC的场景四、技术演进:MCU与SoC的融合趋势1.MCU的进化方向2.SoC的突破方向五、开发者避坑指南结语标签:MCUvsSOC、嵌入式系统、芯片选型、
- python笔记:进程和线程—分布式进程
zyckhuntoria
pythonfoundation
一、分布式进程Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。二、举例实
- SpringBoot项目集成分布式任务调度平台XXL-JOB
樱花语
分布式开发SpringBootXXL-JOB
一、概述XXL-JOB是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。二、特性1、简单:支持通过Web页面对任务进行CRUD操作,操作简单,一分钟上手;2、动态:支持动态修改任务状态、启动/停止任务,以及终止运行中任务,即时生效;3、调度中心HA(中心式):调度采用中心式设计,“调度中心”自研调度组件并支持集群部
- python任务调度平台 界面_分布式任务调度平台XXL-JOB
weixin_39572764
python任务调度平台界面
以前带我的人说过,最好的学习就是看官方文档,个人也有4个T的学习视频,但是会发现讲的都是入门,有的也比较浅。官方文档比较官方,也比较权威,打开xxl-job的官网,写的贼详细,有些人喜欢收博客,不喜欢看官网,因此就直接复制过来了,过段时间会参考文档,自己来一遍。一、简介1.1概述XXL-JOB是一个分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司
- Python 进程与线程-分布式进程
赔罪
分布式python开发语言
目录分布式进程小结分布式进程在Thread和Process中,应当优选Process,因为Process更稳定,而且,Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。
- 基于分组 NMS 的检测模型后处理改进
Lunar*
目标检测算法与优化目标检测深度学习python
引言在目标检测任务中,后处理阶段的非极大值抑制(Non-MaximumSuppression,NMS)是至关重要的一环,主要用于去除高度重叠的冗余预测框。然而,在某些场景中,不同类别的目标可能会被网络同时预测为多个相近的类别,例如:交通工具检测场景:同一辆车可能被误检测为“自行车”和“电动车”。动物检测场景:同一只动物可能被误检测为“狼”和“狗”。家电检测场景:同一台设备可能被误检测为“微波炉”和
- 大模型高效优化技术全景解析:微调、量化、剪枝、梯度裁剪与蒸馏
时光旅人01号
人工智能剪枝算法深度学习数据挖掘人工智能
目录微调(Fine-tuning)量化(Quantization)剪枝(Pruning)梯度裁剪(GradientClipping)知识蒸馏(KnowledgeDistillation)技术对比与协同策略总结与趋势1.微调(Fine-tuning)核心思想在预训练模型(如BERT、GPT)基础上,通过领域数据调整参数,适配下游任务。方法流程预训练模型加载:加载通用模型权重(如HuggingFace
- 推理大模型:技术解析与未来趋势全景
时光旅人01号
深度学习人工智能pythonpytorch神经网络
1.推理大模型的定义推理大模型(ReasoningLLMs)是专门针对复杂多步推理任务优化的大型语言模型,具备以下核心特性:输出形式创新展示完整逻辑链条(如公式推导、多阶段分析)任务类型聚焦擅长数学证明、编程挑战、多模态谜题等深度逻辑任务训练方法升级融合强化学习、思维链(CoT)、测试时计算扩展等技术2.主流推理大模型图谱2.1国际前沿模型OpenAIo1系列内部生成"思维链"机制数学/代码能力标
- 【CSDN|每日一练】编码
海轰Pro
唯有努力算法c++每日一练
目录运行结果题目描述输入描述:输出描述:示例代码结语运行结果题目描述编码工作常被运用于密文或压缩传输。这里我们用一种最简单的编码方式进行编码:把一些有规律的单词编成数字。字母表中共有26个字母{a,b,…,z},这些特殊的单词长度不超过6且字母按升序排列。把所有这样的长度相同的单词放在一起,按字典顺序排列,一个单词的编码就对应着它在整个序列中的位置。你的任务就是对于所给的单词,求出它的编码。输入描
- 【2025年35期免费获取股票数据API接口】实例演示五种主流语言获取股票行情api接口之沪深A股当天分价成交占比数据获取实例演示及接口API说明文档
不会写代码的码农农
pythonjava开发语言股票API股票数据接口股票数据
在近一至两年期间,股票量化分析逐步成为备受关注的热门议题。对于投身于该领域工作而言,首要步骤便是获取全面且精准的股票数据。无论是实时交易数据、历史交易记录、财务数据,亦或是基本面信息,这些数据均是开展量化分析过程中不可或缺的宝贵资源。我们的核心任务在于从这些数据中提炼出具有价值的信息,从而为投资策略提供坚实有力的指导。在数据探索进程中,我尝试运用了多种方法,涵盖自编网易股票页面爬虫程序、申万行业数
- 普通人如何利用GPT赚钱之开发虚拟助手
贫苦游商
普通人利用AI搞钱系列gpt人工智能深度学习机器人AIGC
普通人如何利用GPT赚钱之开发虚拟助手随着人工智能技术的迅猛发展,GPT(GenerativePre-trainedTransformer)作为一种强大的语言模型,正在改变我们的生活和工作方式。普通人如何利用GPT赚钱?开发虚拟助手是一个极具潜力的方向。本文将探讨如何开发虚拟助手,以及如何通过这一技术实现经济收益。什么是虚拟助手虚拟助手是一种基于人工智能的技术,能够理解自然语言并执行特定任务。它们
- 深入浅出 K 近邻算法:原理、实践与应用
烂蜻蜓
机器学习近邻算法算法
引言在机器学习的众多算法中,K近邻算法(K-NearestNeighbors,简称KNN)以其简洁而强大的特性占据着重要地位。它既可以用于分类任务,也能在回归任务中发挥作用。无论是处理简单数据集,还是面对复杂的数据分布,KNN都展现出独特的魅力。本文将深入探讨KNN算法的原理、特点、优缺点、实现步骤以及在分类和回归任务中的具体应用。KNN算法的基本原理KNN算法属于监督学习范畴,其核心思想质朴而直
- BAT命令(常用)
batcmd
bat文件是DOS下的批处理文件,是一种无格式的文本文件。这些文件包含一条或多条命令,以.bat或.cmd为文件扩展名。通过在命令提示符下输入批处理文件的名称,或者双击该文件,系统将调用cmd.exe逐个按照文件中命令的顺序运行它们。使用批处理文件(也称为批处理程序或脚本)能够简化日常或重复性的任务,提高操作效率。这些文件可用于执行一系列命令,如复制、移动、删除文件,以及启动程序等操作,帮助用户自
- DeepSeek大模型部署指南
点我头像干啥
Ai人工智能python分类数据挖掘深度学习
在当今人工智能快速发展的时代,大模型的应用越来越广泛。DeepSeek作为一款高性能的大模型,支持长文本、多模态、代码生成等复杂任务,已经在多个领域展现出强大的能力。本文将详细介绍DeepSeek大模型的部署流程,帮助读者在自己的环境中高效地使用这一先进工具。一、DeepSeek大模型简介DeepSeek是一款专注于大模型与AGI(人工智能通用智能)研究的高性能基座模型。它支持长文本处理、多模态理
- Leetcode刷题--贪心--数组拆分
库库刷题
leetcode贪心leetcode算法
Leetcode刷题–贪心leetcode561–数组拆分题目描述(简单题)给定长度为2n的整数数组nums,你的任务是将这些数分成n对,例如(a1,b1),(a2,b2),…,(an,bn),使得从1到n的min(ai,bi)总和最大。返回该最大总和。示例1:输入:nums=[1,4,3,2]输出:4解释:所有可能的分法(忽略元素顺序)为:(1,4),(2,3)->min(1,4)+min(2,
- Android电量与流量优化
Ya-Jun
android
Android电量与流量优化一、电量优化基础1.1电量消耗原理Android设备的电量消耗主要来源于以下几个方面:屏幕显示:屏幕是耗电量最大的硬件之一,尤其是高亮度和高刷新率的屏幕。CPU处理:CPU执行计算任务时会消耗大量电量,尤其是高负载运算。网络通信:移动数据、Wi-Fi和蓝牙等网络通信会持续消耗电量。GPS定位:GPS定位是非常耗电的操作,尤其是高精度定位。传感器使用:加速度计、陀螺仪等传
- 奇安信网闸面试题
“向阳的蛋”
奇安信安全网络
一、问:在客户现场经常遇到网闸登录密码忘记的情况,那需要如何重置管理员密码呢?答:连接设备串口,输入后台账号密码:hawk/hawk,执行重置命令:webpass,重置后密码为默认!1fw@2soc#3二、问:网闸授权访问模块如果出现业务异常不通情况,排查思路是什么?答:1.检查授权访问配置的监听ip和端口是否被其他任务占用,内外闸任务号是否一致查看授权访问的服务状态是否正常运行登录auditor
- 3.13 YOLO V3
不要不开心了
机器学习pytorch深度学习
今天的内容为YOLO-V3YOLO系列-YOLO-V3,最大的改进就是网络结构,使其更适合小目标检测。-特征做得更细致,融入多持续特征图信息来预测不同规格物体。-先验框更丰富了,3种scale,每种3个规格,一共9种。-softmax改进,预测多标签任务。-多scale-为了能检测到不同大小的物体,设计了3个scale。-scale变换经典方法-左图:图像金字塔;右图:单一的输入。-scale变换
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- Linux 线程
鹰击长空KO
CLinuxlinuxC
【1】什么是线程1.概念线程:是一个进程并发执行多个任务的机制。并发:多个任务同时进行。(cpu以ms级别的速度进程调度,切换进程和线程);进程的上下文切换:上下文:运行一个程序所需要的所有资源。上下文切换:替换原有内容,是一个耗时的操作。为了提高系统的性能,引入一个轻量级的进程概念,称之为线程。线程:属于进程,每一个进程至少需要一个线程作为指令执行体,线程运行在进程空间内。多线程:一个进程中,有
- linux基础02(Bash+vim用法)
景天科技苑
linux基础与进阶shell脚本编写实战linuxbashvim
Bash详解:在Linux系统中,Bash是一种Unixshell,用于与操作系统进行交互,执行命令和脚本,以及管理文件和目录。Bash是BourneAgainSHell的缩写,是一种强大的命令行界面工具,广泛用于Linux和其他类Unix操作系统。Bash提供了非常丰富的命令集和脚本编程功能,可以用于自动化任务、批处理操作、系统管理、软件开发等各种用途。我们在服务器上操作命令时,谨记:1、在服务
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟