120. Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
My Solution(C/C++)
#include
#include
#include
#include
using namespace std;
class Solution {
public:
//vector> minimumTotal(vector> &triangle) {
int minimumTotal(vector> &triangle) {
int row = triangle.size();
vector> dp(row, vector());
for (int i = row - 1; i >= 0; i--) {
for (int j = 0; j < triangle[i].size(); j++) {
if (i == row - 1) {
dp[i].push_back(triangle[i][j]);
}
else {
dp[i].push_back(triangle[i][j] + min(dp[i + 1][j], dp[i + 1][j + 1]));
}
}
}
//return dp;
return dp[0][0];
}
};
int main() {
vector> triangle(4, vector());
triangle[0].push_back(2);
triangle[1].push_back(3);
triangle[1].push_back(4);
triangle[2].push_back(6);
triangle[2].push_back(5);
triangle[2].push_back(7);
triangle[3].push_back(4);
triangle[3].push_back(1);
triangle[3].push_back(8);
triangle[3].push_back(3);
//printf("%d ", triangle[1][1]);
Solution s;
//vector> dp;
//dp = s.minimumTotal(triangle);
//for (int i = 0; i < dp.size(); i++) {
// for (int j = 0; j < dp[i].size(); j++) {
// printf("%d ", dp[i][j]);
// }
// printf("\n");
//}
printf("三角形最小路径和:%d", s.minimumTotal(triangle));
return 0;
}
My Solution(Python)
class Solution:
def minimumTotal(self, triangle):
"""
:type triangle: List[List[int]]
:rtype: int
"""
row = len(triangle) - 1
column = len(triangle[len(triangle)-1]) - 1
dp = [[] for i in range(row + 1)]
for i in range(column + 1):
dp[row].append(triangle[row][i])
for r in range(row - 1, -1, -1):
for c in range(len(triangle[r])):
dp[r].append(min(dp[r+1][c], dp[r+1][c+1]) + triangle[r][c])
return dp[0][0]