python杂记【list到numpy array再到增加维度】

1.python列表list,转换成numpy数组array

import numpy as np      #加入numpy模块

假设A是一个列表,则使用 np.array(A)   将列表转换成数组


2.改变numpy数组的维度

numpy模块中包含newaxis可以给原始数组曾加一个维度,np.newaxis放的位置不同,产生的新数组也不同。

假设X是(20,50)的二维数组,现在想把它变成(1,20,50,1)的四维数组,则使用X1=X[np.newaxis,:,:,np.newaxis]

通过print(X.shape)   print(X1.shape)可以查看


3.改变一个数组的形状用reshape


4.改变numpy数据类型

假设a是一个numpy数组,查看数据类型:a.dtype   使用dtype=np.float32来改变数据类型



CNN主要用来识别位移、缩放及其他形式扭曲不变性的二维图形。

在图像处理中,往往把图像表示为像素的向量,比如一个1000×1000的图像,可以表示为一个1000000的向量。在上一节中提到的神经网络中,如果隐含层数目与输入层一样,即也是1000000时,那么输入层到隐含层的参数数据为1000000×1000000=10^12,这样就太多了,基本没法训练。所以图像处理要想练成神经网络大法,必先减少参数加快速度。

卷积神经网络有两种神器可以降低参数数目,第一种神器叫做局部感知野。一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的。局部感知野:假如每个神经元只和10×10个像素值相连,那么权值数据为1000000×100个参数,减少为原来的千分之一。而那10×10个像素值对应的10×10个参数,其实就相当于卷积操作。

第二级神器,即权值共享。在上面的局部连接中,每个神经元都对应100个参数,一共1000000个神经元,如果这1000000个神经元的100个参数都是相等的,那么参数数目就变为100了。

怎么理解权值共享呢?我们可以这100个参数(也就是卷积操作)看成是提取特征的方式,该方式与位置无关。这其中隐含的原理则是:图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,我们都能使用同样的学习特征。

更直观一些,当从一个大尺寸图像中随机选取一小块,比如说 8×8 作为样本,并且从这个小块样本中学习到了一些特征,这时我们可以把从这个 8×8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,我们可以用从 8×8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

你可能感兴趣的:(python杂记【list到numpy array再到增加维度】)