- 使用LangChain实现大规模语言模型自发现推理结构
VYSAHF
langchain语言模型人工智能python
使用LangChain实现大规模语言模型自发现推理结构在现代自然语言处理(NLP)的研究中,大规模语言模型(LLMs)已经展示了强大的能力。然而,在应对复杂的推理问题时,传统的提示方法常常力不从心。这篇文章将带您了解SELF-DISCOVER,一种新兴的框架,如何通过LangChain来实现自动化、动态化的推理结构构建,以提高LLMs的性能。技术背景介绍大规模语言模型(如GPT-4和PaLM2)已
- A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS——大型语言模型的训练后优化综述——第9部分——应用
王金-太想进步了
语言模型人工智能自然语言处理
应用尽管预训练为大型语言模型(LLMs)赋予了强大的基础能力,但在部署于专业领域时,LLMs仍经常遇到持续的限制,包括上下文长度受限、容易产生幻觉(hallucination)、推理能力欠佳和固有的偏见。在现实世界的应用中,这些不足显得尤为重要,因为在这些场景中,精确性、可靠性和伦理一致性是至关重要的。这些问题引发了一些根本性的探讨:(1)如何系统地提高LLM的表现以满足特定领域的需求?(2)在实
- OpenStack Heat模板实战:快速创建用户、容器、网络与云主机类型
冯·诺依曼的
openstack网络ssh运维云计算
Heat是OpenStack中的编排服务,通过YAML模板自动化资源管理。本文通过4个实战案例,详解如何用Heat模板创建用户体系、Swift容器、网络资源及云主机类型。一、创建用户、Domain、租户及用户绑定目标:在chinaskillsDomain下创建beijing_group租户,并创建用户cloud。#user_create.ymlheat_template_version:2016-
- 【源码阅读】olmocr中的prompts
海绵波波107
#大模型pdf
目录一、PDF转换为训练数据二、使用微调模型三、比较差异总结一、PDF转换为训练数据让ChatGPT-4将文档(如PDF文件)转换为结构化的“银级”训练数据(silvertrainingdata)#Thisisthepromptweuseforgettingchatgpt4otoconvertdocumentsintooursilvertrainingdatadefbuild_openai_sil
- 关于stable diffusion的lora训练在linux远程工作站的部署
回天一梦
stablediffusionpython经验分享
在学校Arc中部署loratraining,一大问题就是依赖缺失和冲突。可以利用miniconda或者anaconda建立虚拟环境来解决。安装anaconda或者miniconda(官网上也有教程):wgethttps://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.shchmod+xAnaconda3-5.3.0-Linux-x8
- 大模型巅峰对决:DeepSeek vs GPT-4/Claude/PaLM-2 全面对比与核心差异揭秘
accurater
机器学习科技人工智能
喜欢可以到主页订阅专栏目录技术架构对比性能表现与基准测试多模态与多语言能力推理效率与成本分析开源生态与行业适配应用场景与案例研究未来发展与技术趋势代码实现与调用示例1.技术架构对比DeepSeek:动态稀疏激活的混合专家系统(MoE)动态路由机制:每个输入仅激活约5.5%的参数(如6710亿参数中激活370亿),显著降低计算能耗40%。模块化设计:支持金融、医疗等领域的即插即用式微调,行业适配能力
- 模型的秘密武器:利用注意力改善长上下文推理能力
步子哥
人工智能自然语言处理深度学习语言模型
【导语】在大语言模型(LLM)不断刷新各项任务记录的今天,很多模型宣称能处理超长上下文内容,但在实际推理过程中,复杂问题往往因隐性事实的遗漏而败下阵来。今天,我们就以《AttentionRevealsMoreThanTokens:Training-FreeLong-ContextReasoningwithAttention-guidedRetrieval》为蓝本,带大家通俗解读如何利用Transf
- 大语言模型微调和大语言模型应用的区别?
AI Echoes
人工智能深度学习机器学习
大语言模型微调和大语言模型应用的区别?1.定义与目标微调(Fine-tuning)目标:调整预训练模型(如GPT、LLaMA、PaLM)的参数,使其适应特定任务或领域。核心:通过额外的训练(使用特定数据集)优化模型的性能,提升其在特定场景下的效果。例如:将通用模型微调为法律咨询、医疗诊断或金融分析的专业模型。应用(Application)目标:直接使用预训练或微调后的模型解决实际问题,无需修改模型
- 聊天模型集成指南
三月七꧁ ꧂
langchain+llmmicrosoft语言模型prompt人工智能自然语言处理开发语言llama
文章目录聊天模型集成指南Anthropic聊天模型集成PaLM2聊天模型集成OpenAl聊天模型集成聊天模型集成指南 随着GPT-4等大语言模型的突破,聊天机器人已经不仅仅是简单的问答工具,它们现在广泛应用于客服、企业咨询、电子商务等多种场景,为用户提供准确、快速的反馈。在这样的背景下,开发者们急需一套可以轻松切换、集成不同平台的工具。正是基于这样的需求,Anthropic、PaLM2和Op
- CSDN每日一练
文盲老顾
算法每日一练
每日一练不会做的题目n边形划分K树盗版解锁密码小豚鼠搬家清理磁盘空间待更新未能完全通过case的题目拯救爱情环形单向链表硬币的面值(CSDN已修改用例数据,2023-2-14)小计不会做的题目n边形划分练习题地址https://edu.csdn.net/skill/program/28790?practiceId=19348927题目名称:n边形划分时间限制:1000ms内存限制:256M题目描述
- weka 决策树
marui1982
机器学习
1.参数说明:Generaloptions:-hor-helpOutputhelpinformation.-synopsisor-infoOutputsynopsisforclassifier(useinconjunctionwith-h)-t(trainfile,训练文件,通常训练时只需要此文件即可,会进行10交叉验证)Setstrainingfile.-T(测试文件,如果设置,则不进行交叉验证
- GDB使用总结
mzhan017
gccgdb/coredumplinuxgdb
文章目录gdb版本信息建议环境变量问题gdb命令的参数--configuration--argskillset设置要调试的文件设置源码路径set还可以设置当前程序变量值如果第一个参数前没有选项-segdbthread类大小端问题调试.gdbinit加载.gdbinit失败设值汇编格式调试daemon程序设置参数dir技巧catchcatchsyscallptypeunionstruct如何查看宏定
- git subtree 高频使用方法
NickDeCodes
gitgitgithub
subtree高频使用方法官网添加新的子项目查看子项目的差异使用子项目克隆存储库引入超级项目更新改变分支引入子项目更新对子项目进行更改将更改推送到子项目存储库高效配置添加新的子项目subtreegitsubtreeadd--prefix=example-submodulehttps://github.com/githubtraining/example-submodulemaster--squas
- Training-Free Transformer Architecture Search WithZero-Cost Proxy Guided Evolution(预览版本)
境心镜
transformer深度学习人工智能
摘要Transformers已表现出卓越的性能,然而,其架构设计是一个耗时的过程,需要专业知识和反复试验。因此,研究通过Transformer架构搜索(TAS)自动搜索高性能Transformers的有效方法是值得的。为了提高搜索效率,基于无训练代理的方法已在神经架构搜索(NAS)中得到广泛采用。然而,这些代理被发现不足以很好地推广到Transformer搜索空间,这一点已被多项研究和我们自己的实
- UOS统信系统 WebServer服务器
你可知这世上再难遇我
2024~23技能大赛UOS统信系统webserver
题目解题##配置apache基础环境##apache主页面和子页面认证##认证子页面##创建ldap用户##签发证书##配置重定向+https##配置重定向##配置Opendaylight##配置java##安装mininet和ovswitch测试##配置流表##开启HTTP-Server##h3获取h1主机文件题目提供www.skills.comskills公司的门户网站;使用apache服务;
- 新范式:人机协作与AI时代的胜利(Kyndryl赞助)
出海指南针
AWS
新范式:人机协作与AI时代的胜利(Kyndryl赞助)关键字:[AmazonWebServicesre:Invent2024,亚马逊云科技,KindrelVital,HumanExperienceDesign,AiTransformationJourneys,SkillsAssessmentPersonas,CollaborativeDesignProcess,Data-DrivenExperie
- Training-free Neural Architecture Searchthrough Variance of Knowledge of Deep Network Weights(预览版本)
境心镜
免训练深度学习人工智能NAS
代码位置摘要深度学习彻底改变了计算机视觉,但它使用深度网络架构取得了巨大的成功,而这些架构大多是手工制作的,因此可能不是最理想的。神经架构搜索(NAS)旨在通过遵循明确定义的优化范式来弥补这一差距,该范式系统地寻找最佳架构,给定客观标准,例如最大分类准确度。然而,NAS的主要限制是其天文数字般的计算成本,因为它通常需要从头开始训练每个候选网络架构。在本文中,我们旨在通过基于Fisher信息提出一种
- AI芯片概述-分类、应用、技术(APU、CPU、DPU、GPU、NPU和TPU)及厂家
一码当前
AI基础人工智能分类数据挖掘
写这篇文章的起因是老板想了解下AI芯片(NPU/GPU区别等),他不是搞技术那一挂的,所以就简单整理下,留作记录,顺便分享给各位。文章目录一、AI芯片是什么?二、AI芯片分类1.Training(训练)2.Inference(推理)三、AI芯片应用领域四、AI芯片技术路线五、APU、CPU、DPU、GPU、NPU和TPU六、AI芯片厂家一、AI芯片是什么?AI芯片:针对人工智能算法做了特殊加速设计
- BurpSuit官方实验室之SQL注入
tpaer
从入门到入狱web安全sqlweb后端数据库
BurpSuit官方实验室之SQL注入这是BurpSuit官方的实验室靶场,以下将记录个人SQL注入共17个Lab的通关过程WebSecurityAcademy:FreeOnlineTrainingfromPortSwiggerlab1:SQLinjectionvulnerabilityinWHEREclauseallowingretrievalofhiddendataWHERE子句中的SQL注入
- 探索未来文本的无限可能:OLMo 开源语言模型深度解析
钟洁祺
探索未来文本的无限可能:OLMo开源语言模型深度解析OLMoModeling,training,eval,andinferencecodeforOLMo项目地址:https://gitcode.com/gh_mirrors/ol/OLMo在人工智能的浩瀚领域中,一个崭新的星体正在升起——OLMo:OpenLanguageModel。由AI2(艾伦人工智能研究所)的科学家们精心打造,OLMo不仅仅是
- 零基础也能看懂的ChatGPT等大模型入门解析!大模型入门到精通,看这篇就够了!
大模型微调实战
chatgpt百度人工智能大数据wps学习大模型
近两年,大语言模型LLM(LargeLanguageModel)越来越受到各行各业的广泛应用及关注。对于非相关领域研发人员,虽然不需要深入掌握每一个细节,但了解其基本运作原理是必备的技术素养。本文笔者结合自己的理解,用通俗易懂的语言对复杂的概念进行了总结,与大家分享~什么是ChatGPT?GPT对应的是三个关键概念:生成式(Generative)、预训练(Pre-Training)和Transfo
- 探秘Mixup:数据增强的新利器
荣正青
探秘Mixup:数据增强的新利器mixupImplementationofthemixuptrainingmethod项目地址:https://gitcode.com/gh_mirrors/mi/mixup项目简介是一个由HongyiZhang开发的Python库,它实现了机器学习中的数据增强策略——Mixup方法。这个项目的目标是通过混合不同样本的数据点生成新的训练样本,从而帮助模型更好地学习数
- PalmImage-开源:图像格式转换器的开源项目解析
胡说先森
本文还有配套的精品资源,点击获取简介:PalmImage是一个开源Java应用程序,专为桌面和服务器环境设计,它能够将GIF、JPEG等常见图像格式以及View文档转换为适用于Palm设备的格式。通过Java技术的应用,PalmImage提供跨平台支持,并利用JavaAPI处理图像转换。作为开源项目,它鼓励社区参与改进,并提供免费使用的优势。同时,PalmImage的命令行界面和脚本自动化为用户提
- 强化学习与网络安全资源-论文和环境
AI拉呱
web安全安全
TableofContentsRL-EnvironmentsPapersBooksBlogpostsTalksMiscellaneous↑EnvironmentsPentestingTrainingFrameworkforReinforcementLearningAgents(PenGym)TheARCDPrimary-levelAITrainingEnvironment(PrimAITE)CSL
- 大模型隐空间推理论文阅读笔记
猴猴猪猪
AIGCpython实验记录人工智能深度学习
文章目录TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介1.1摘要1.2引言TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介机构:Meta代码:任务:特点:方法:1.1摘要现状:大语言模型往往局限在“languagespace"进行推理,在解决
- tomcat 服务
狂踹瘸子那条好腿!
tomcatjava
任务描述:采用Tomcat搭建动态网站。这个先做(3)配置linux3和linux4为tomcat服务器,网站默认首页内容分别为“tomcatA”和“tomcatB”,仅使用域名访问80端口http和443端口https;证书路径均为/etc/ssl/skills.jks。[root@linux3~]#tar-zxvfapache-tomcat-10.0.2.tar.gz[root@linux3~
- Meta:基于数据关系的LLM高效预训练
大模型任我行
大模型-模型训练人工智能自然语言处理语言模型论文笔记
标题:Data-EfficientPretrainingwithGroup-LevelDataInfluenceModeling来源:arXiv,2502.14709摘要数据高效的预训练已显示出提高缩放定律的巨大潜力。本文认为有效的预训练数据应该在组级别进行管理,将一组数据点作为一个整体而不是独立的贡献者。为此,我们提出了一种新的数据高效预训练方法GroupLevelDataInfluenceMo
- 扑克强化学习:DouZero/douzero/dmc/dmc.py (train)
强化学习曾小健
python人工智能深度学习
deftrain(flags):"""Thisisthemainfuntionfortraining.Itwillfirstinitilizeeverything,suchasbuffers,optimizers,etc.Thenitwillstartsubprocessesasactors.Then,itwillcalllearningfunctionwithmultiplethreads.""
- TensorFlow 架构
weixin_zdpau
AItensorflow人工智能神经网络
https://www.tensorflow.org/guide/extend/architecture一WedesignedTensorFlowforlarge-scaledistributedtrainingandinference,butitisalsoflexibleenoughtosupportexperimentationwithnewmachinelearningmodelsands
- TensorFlow基础架构
humbinal
tensorflow
处理结构计算图纸Tensorflow首先要定义神经网络的结构,然后再把数据放入结构当中去运算和training.处理结构因为TensorFlow是采用数据流图(dataflowgraphs)来计算,所以首先我们得创建一个数据流流图,然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算.节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen