- ❤【纯干货】Matplotlib总结,任何项目都用得到❤
.Boss.
支持向量机人工智能算法机器学习python
.................❤纯干货❤..........目录1、绘制基本图形2、定制化图形3、支持多个坐标轴4、3D绘图5、动态交互绘图6、绘制地图7、绘制统计图表最后Matplotlib在很多人眼里是无敌的存在,而且可以说是无敌的存在。走过数据科学的路,路上必然有Matplotlib的风景在你周围。如果同一个项目,你的用了matplotlib不仅有基本图形、定制化图形、多个坐标轴、3D绘
- 房产租赁数据分析与可视化
学习只是用户态
数据分析信息可视化数据挖掘
【实训目的】 通过本次实训,要求了解Python用于数据可视化的常用包:matplotlib、seaborn、pyecharts等基本使用,及各种图形的使用。【实训环境】 Jupyter环境、Pandas、NumPy、Matplotlib。【实训内容】 1.数据统计与分析方面的可视化; 2.数据分析与预测方面的可视化; 3.数据多类型的可视化。 本次实验以温州市三区房屋租赁数据(res
- AI学习指南RAG篇(14)-RAG企业级应用案例
俞兆鹏
AI学习指南ai
文章目录一、引言二、企业级RAG应用案例1.智能客服系统1.1案例背景1.2实现过程1.3示例代码2.知识管理平台2.1案例背景2.2实现过程3.企业级RAG系统建设3.1案例背景3.2实现过程三、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术在企业级应用中展现出巨大的潜力和价值。通过结合检索和生成,RAG系统能够提供更准确、更相关的回答,满足企
- linux jvm gc日志分析,JVM GC 日志详解
一只小小的IOS
linuxjvmgc日志分析
本文采用的JDK版本:javaversion"1.8.0_144"Java(TM)SERuntimeEnvironment(build1.8.0_144-b01)JavaHotSpot(TM)64-BitServerVM(build25.144-b01,mixedmode)一、GC日志参数设置JVMGC格式日志的主要参数包括如下8个:-XX:+PrintGC输出简要GC日志-XX:+PrintGC
- 【机器学习】基于t-SNE数据可视化工程
无水先生
AI原理和python实现人工智能综合人工智能算法
一、说明t-SNE(t-DistributedStochasticNeighborEmbedding)是一种常用的非线性降维技术。它可以将高维数据映射到一个低维空间(通常是2D或3D)来便于可视化。Scikit-learnAPI提供TSNE类,以使用T-SNE方法可视化数据。在本教程中,我们将简要学习如何在Python中使用TSNE拟合和可视化数据。二、t-SNE是个什么?2.1什么是t-SNE?
- 基于oracle linux的 DBI/DBD 标准化安装文档(二)
文档
一、安装DBIDBI(DatabaseInterface)是perl连接数据库的接口。其是perl连接数据库的最优方法,他支持包括Orcale,Sybase,mysql,db2等绝大多数的数据库,下面将简要介绍其安装方法。1.1解压tar-zxvfDBI-1.616_901.tar.gz1.2安装依赖yuminstallperl-ExtUtils-CBuilderperl-ExtUtils-Mak
- TensorRT-LLM保姆级教程-快速入门
大模型八哥
笔记agiai大模型ai大模型LLMTransformer
随着大模型的爆火,投入到生产环境的模型参数量规模也变得越来越大(从数十亿参数到千亿参数规模),从而导致大模型的推理成本急剧增加。因此,市面上也出现了很多的推理框架,用于降低模型推理延迟以及提升模型吞吐量。本系列将针对TensorRT-LLM推理进行讲解。本文为该系列第一篇,将简要概述TensorRT-LLM的基本特性。另外,我撰写的大模型相关的博客及配套代码均整理放置在Github,有需要的朋友自
- 关于scipy中uniform_filter函数的注意事项
明·煜
scipy
关于scipy中uniform_filter函数的注意事项在处理分组聚合问题时,有时需要使用均值作为统计量。那其实就是一个均值滤波问题。我不希望使用for循环和均值卷积核来对二维数组进行滤波,因为这个线性运算且可用通过数字搬移来实现。在使用uniform_filter时在边界处会出现难以解释的值,不过后来发现是我对python语法不够熟悉导致的。例如以下代码:importnumpyasnpx=np
- 基于oracle linux的 DBI/DBD 标准化安装文档(三)
oracle
一、安装DBIDBI(DatabaseInterface)是perl连接数据库的接口。其是perl连接数据库的最优方法,他支持包括Orcale,Sybase,mysql,db2等绝大多数的数据库,下面将简要介绍其安装方法。1.1解压tar-zxvfDBI-1.616_901.tar.gz1.2安装依赖yuminstallperl-ExtUtils-CBuilderperl-ExtUtils-Mak
- JavaScript性能优化指南:聚焦DOM操作优化
桃木山人
技术杂谈javascript性能优化开发语言
引言:性能优化的关键路径在Web应用开发中,JavaScript性能直接影响用户体验。虽然存在多种优化手段,但DOM操作优化往往能带来最显著的性能提升。本文将以DOM操作为核心展开深入分析,并简要概述其他优化方向。核心优化:DOM操作性能提升1.问题根源分析浏览器渲染引擎与JavaScript引擎独立运作,频繁的DOM操作会导致:重排(Reflow):计算元素几何属性重绘(Repaint):更新元
- **ResNet-SE + MFCC** 训练框架,包括 **数据加载、训练流程**,以及 **混淆矩阵** 可视化示例
大霸王龙
系统分析业务矩阵python线性代数人工智能机器学习深度学习
1.依赖库安装如果你还没安装相关库,请先执行:pipinstalltorchtorchaudiotorchvisionscikit-learnmatplotlibtqdm2.数据加载这里假设你有一个音频分类数据集,其文件结构如下:dataset/│──train/│├──class_0/││├──audio_0.wav││├──audio_1.wav│├──class_1/││├──audio_0
- 大语言模型(LLMs)全面学习指南(非常详细)零基础入门到精通,收藏这一篇就够了
网络安全大白
科技程序员人工智能语言模型人工智能自然语言处理
大语言模型(LLMs)作为人工智能(AI)领域的一项突破性发展,已经改变了自然语言处理(NLP)和机器学习(ML)应用的面貌。这些模型,包括OpenAI的GPT-4o和Google的gemini系列等,已经展现出了在理解和生成类人文本方面的令人印象深刻的能力,使它们成为各行各业的宝贵工具。如下这份指南将涵盖LLMs的基础知识、训练过程、用例和未来趋势……一.WhatareLargeLanguage
- AI学习指南RAG篇(5)-RAG的系统架构
俞兆鹏
AI学习指南ai
文章目录一、引言二、RAG系统的四个核心组件1.知识库处理模块1.1文档收集1.2文档预处理1.3示例代码2.向量化模块2.1文本嵌入2.2向量数据库2.3示例代码3.检索引擎3.1检索算法3.2检索结果排序3.3示例代码4.生成模块4.1生成模型4.2提示工程4.3示例代码三、RAG系统的架构图四、总结一、引言RAG(Retrieval-AugmentedGeneration,检索增强生成)技术
- php mysql中几个版本的进化史_PHP 进化史 — 从 v5.6 到 v8.0
插门胡的小背心
phpmysql中几个版本的进化史
在此篇文章中,我们将用15分钟对PHPv7.x版本更改进行简要回顾。PHP7.3版本发布后,为了更好地理解这门广泛流行的编程语言的新特性和优化之处,我决定详细地研究下PHP开发:正在开发什么以及其开发方向。在查看了PHP在PHP7.x版本开发过程中实现的一系列特性的简要列表之后,我决定自己整合这个列表作为一个很好的补充,我相信也会有人觉得有用的。我们将从PHP5.6作为基准开始,研究添加或者更改了
- winpython使用教程-winpython是什么
weixin_37988176
WinPython是一个免费的开源可移植的Python编程语言发行版,适用于Windows7/8/10和科学及教育用途。它是一个功能齐全的基于python的科学环境:●专为科学家、数据科学家和教育设计(感谢NumPy、SciPy、y、Matplotlib、panda、pyqtgraph等):使用Python与Spyder和Jupyter/IPython、Pyzo、IDLEX或IDLE进行交互数据处
- Python学习第十五天
Leo来编程
Python学习python学习
Django概念Django最初被设计用于具有快速开发需求的新闻类站点,目的是要实现简单快捷的网站开发。以下内容简要介绍了如何使用Django实现一个数据库驱动的网络应用。(Django是一个开放源代码的第三方模块Web应用框架,并且是一个功能全,重量的框架。Flask框架是一个轻量级功能少,从github上搜索pythonweb项目基本都出来的是django和flask项目)学习文档可以使用:官
- 基于oracle linux的 DBI/DBD 标准化安装文档
linux
一、安装DBIDBI(DatabaseInterface)是perl连接数据库的接口。其是perl连接数据库的最优方法,他支持包括Orcale,Sybase,mysql,db2等绝大多数的数据库,下面将简要介绍其安装方法。1.1解压tar-zxvfDBI-1.616_901.tar.gz1.2安装依赖yuminstallperl-ExtUtils-CBuilderperl-ExtUtils-Mak
- C++20 新特性总结
arong-xu
ModernC++c++20算法
简要总结C++20引入了四项非常大的更新,分别是:概念(Concepts).用来简化模板编程,强化表达能力.并且使得出错原因更容易查找.模块(Modules).这是代码组织方面非常大的更新.提供了新的方式来组织代码,并且可以减少编译时间.范围库(RangesandViews).轻量级的,非拥有的范围库,允许对数据进行各种操作.协程(Coroutine).多线程编程方面的一次重大更新.本文将会对C+
- 2024年5月份架构师考试论文真题完整版
Zoi Gil(学习)
大数据flinkhdfshadooppython
三、论文1.关于大数据的,Lambda架构文老师押中了原题,几乎描述一致撰写关于Lambda架构的软考论文时,一个清晰且结构化的大纲是成功的关键。以下是一个简单的论文大纲示例,旨在覆盖Lambda架构的核心概念、设计原则、优缺点、实际应用案例以及对比其他架构(如Kappa架构)的分析:大纲简要介绍Lambda架构的基本概念及其在大数据处理领域的地位。概述论文的主要研究内容、目的及预期贡献。背景介绍
- 2024架构设计师论文题目
数字化信息化智能化解决方案
2024架构
论文1大数据lamda架构1、简要说明你参开发的软件项目,吸你所承担的主要作2、lamada体系架构将数据流分为批处理层(对应的英文、加速层文、服务层。简要叙这三个层次的用途和特点3、详细阐述你参与开发的软件项目如何基于lamada体系架构进行大数据处理的架构论文2模型驱动架构设计方法及其用1、简要说明你参与分析和研发的软件项目,吸你所承担的要工作2、简要阐述采用模型驱动架构思想进行软件开发的全过
- 点云空洞的边界识别提取 pso-bp 神经网络的模型来修复点云空洞 附python代码
点云-激光雷达-Slam-三维牙齿
激光雷达点云c++为主神经网络人工智能深度学习点云python
代码是一个Python程序,用于处理3D点云数据,特别是检测和修复点云中的孔洞区域。1.**导入库**:-`numpy`:用于数学运算。-`open3d`:用于处理3D数据和可视化。-`torch`:PyTorch库,用于深度学习。-`torch.nn`和`torch.optim`:PyTorch的神经网络和优化器模块。-`mpl_toolkits.mplot3d`和`matplotlib.pyp
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- Python画图
syy敬礼
python
使用matplotlibimportmatplotlib.pyplotasplt#数据x=[1,2,3,4,5]y=[2,4,6,8,10]#绘制折线图plt.plot(x,y)#添加标题和轴标签plt.title('简单折线图')plt.xlabel('X轴')plt.ylabel('Y轴')#显示图形plt.show()使用seaborn画图importseabornassnsimportma
- ASL集睿致远CS5563 DP TO HDMI 8k60方案芯片的简要介绍
人工智能机器人自动驾驶图像识别
集睿致远ASLCS5563是国产芯片厂商集睿致远(ASL)推出的一款高性能视频协议转换芯片,CS5563支持DisplayPort1.4/2.0输入与HDMI2.1输出,兼容TMDS和FRL(FixedRateLink)两种信令模式。其DP接收器支持最高8.1Gbps的链路速率,HDMI输出则通过FRL模式实现单通道12Gbps的传输速率,可满足8K@60Hz或4K@240Hz的高刷新率需求。集睿
- 基于python 利用ERA5 资料绘制水汽剖面图
happycatherin
pythonnumpymatplotlib
#-*-coding:utf-8-*-"""CreatedonMonApr309:28:072023@author:PC"""#-*-coding:utf-8-*-"""CreatedonMonJul1116:54:302022@author:PC"""importcartopy.crsasccrsimportcartopy.featureascfeatureimportmatplotlib.py
- linux的 DBI/DBD 标准化安装文档
linux
一、安装DBIDBI(DatabaseInterface)是perl连接数据库的接口。其是perl连接数据库的最优方法,他支持包括Orcale,Sybase,mysql,db2等绝大多数的数据库,下面将简要介绍其安装方法。1.1解压tar-zxvfDBI-1.616_901.tar.gz1.2安装依赖yuminstallperl-ExtUtils-CBuilderperl-ExtUtils-Mak
- 基于线性回归和多项式回归的完整代码
yzx991013
回归线性回归算法
1.导入必要库importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportLinearRegressionfromsklearn.preprocessingimportPolynomialFeaturesfromsklearn.pipelineimportPipelinefromsklearn.metricsi
- python小白精华快速上手知识笔记(简短版)
小白探索中
笔记python
PYTHON基本语法目录一、变量和数据类型1.变量2.数据类型二、基本函数输出函数-print()输入函数-input()类型转换函数长度函数-len()数学运算函数(在math模块中)定义函数调用函数三、数据结构列表(list)字典(dict)元组(tuple)四、基本库NumPy(用于数值计算)Pandas(用于数据处理和分析)Matplotlib(用于数据可视化)Scikit-learn(用
- python链家数据分析_利用Python分析北京链家二手房数据
熊仔仔仔仔
python链家数据分析
这是一篇非常简单易懂的分析方法,你只需要了解Python的3个包(numpy,pandas,matplotlib)和Python基本的语法结构就可以看懂了。当然,跟着这篇文章亲手试一次更能加深你的理解~有任何不懂的问题都可以私信我哈~欢迎私撩一、明确分析目的和思路1、分析北京二手房成交价格分布情况2、分析成交量超过一亿的经纪人相关因素二、数据准备1、数据概况(1)爬虫爬取的链家经纪人的成交数据(2
- ANOVA:在Python中构建和理解ANOVA(方差分析)
python收藏家
python数据科学python
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-wayANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。重要概念总体均值(Popula
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement