- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- 常州 d8
Rikka's_qwq
算法c++学习
好难啊哈哈哈大家考得好像都不是很好中午刚出成绩就发了动态了我也真是被自己无语到了t1测试样例时输出的数据没注释掉爆零t2freopen注释掉了爆零啊哈哈t1虽然我写的是最朴素的做法...但好歹能骗40分呢给我炸了正解是这样的#include#defineintlonglong#definedoublelongdouble#definephi(sqrt(5)+1)/2usingnamespacest
- 让你的 Git 历史更直观 —— 体验 VS Code 的 Interactive Git Log 插件
小DuDu
工具gitvscode
在日常开发中,我们离不开Git。但原生的gitlog命令虽然强大,却不够直观,查看历史记录时往往需要一遍遍地翻阅命令行输出,效率并不高。今天,就来介绍一款让你的Git历史更加可视化的VSCode插件——InteractiveGitLog!✨为什么选择InteractiveGitLog?Git版本管理的核心是commit记录,但传统的gitlog命令行方式过于“朴素”,让我们在查找某个特定提交时非常
- 3.0 二分查找算法:二分查找算法简介
熊峰峰
#1.每日练习算法数据结构c++二分查找
二分查找算法简介一、算法定义二、算法原理三、示例分析四、C++实现五、关键注意事项六、适用场景与局限性七、二分查找的三大模板1.朴素的二分模板2.查找左边界的二分模板3.查找右边界的二分模板4.关键对比与总结一、算法定义二分查找(BinarySearch)是一种在有序数组中快速查找目标元素的算法。其核心思想是通过分治策略不断缩小搜索范围,时间复杂度为O(logn),效率远高于线性查找(O(n))。
- 机器学习 [白板推导](三)[线性分类]
神齐的小马
机器学习分类人工智能
4.线性分类4.1.线性分类的典型模型硬分类:输出结果只有0或1这种离散结果;感知机线性判别分析Fisher软分类:会输出0-1之间的值作为各个类别的概率;概率生成模型:高斯判别分析GDA、朴素贝叶斯,主要建模的是p(x⃗,y)p(\vec{x},y)p(x,y)概率判别模型:逻辑回归,主要建模的是p(y∣x⃗)p(y|\vec{x})p(y∣x)4.2.感知机4.2.1.基本模型 模型:f(x
- SQLite?低调不是小众...
架构文摘JGWZ
sqlite数据库学习后端
前几天在一个群里看到一位同学说:“SQLite这么小众的数据库,到底是什么人在用啊?”首先要说的是SQLite可不是小众的数据库,相反,SQLite是世界上装机量最多的数据库,远超MySQL,只不过比较低调而已。低调到我想在官网上找一个好看的用来当插图的图片都找不到,只能截一张官网首页来撑一撑,看起来十分朴素。我最早听说SQLite是刚毕业工作的时候,我们部门做微软内容管理产品的二次开发,其中有一
- 计算机视觉(Computer Vision, CV)的入门到实践的详细学习路线
云梦优选
计算机数据库大数据计算机视觉学习人工智能
一、基础准备1.数学基础线性代数深入矩阵运算,理解矩阵乘法、转置、逆等基本概念。掌握特征值与特征向量的几何意义,理解其在图像压缩、特征提取中的应用。学习奇异值分解(SVD)及其在降维和数据压缩中的具体应用。概率与统计熟悉贝叶斯定理及其在分类任务中的应用,如朴素贝叶斯分类器。理解常见概率分布(如正态分布、二项分布)及其性质。学习统计推断方法,如假设检验、置信区间估计,以评估模型性能。微积分掌握梯度、
- 【基于PyTorch】多项式贝叶斯分类器实现中文文本情感分类任务
鱼弦
机器学习设计类系统pytorch分类人工智能
多项式贝叶斯分类器实现中文文本情感分类任务介绍多项式朴素贝叶斯(MultinomialNaiveBayes,MultinomialNB)是一种常用于文本分类的算法,特别适用于多类别文本分类。其在处理离散数据(如文本数据中的词频)时表现优异,可以用于情感分析、垃圾邮件检测等任务。应用使用场景情感分析:识别用户评论的情感,例如正面评论和负面评论。垃圾邮件检测:鉴别电子邮件是否为垃圾邮件。新闻分类:将新
- 机器学习_重要知识点整理
嘉羽很烦
机器学习机器学习
机器学习重要知识点整理一、数学与理论基础1.概率与统计术语作用使用场景概率分布描述随机变量的取值概率,如正态分布、二项分布。数据建模(如高斯分布假设)、生成模型(如贝叶斯网络)。贝叶斯定理计算条件概率,更新先验知识以获得后验概率。贝叶斯分类器、文本分类(如垃圾邮件检测)。最大似然估计(MLE)通过数据最大化似然函数,估计模型参数。线性回归、逻辑回归参数估计。假设检验判断假设是否成立(如t检验、卡方
- 文本挖掘+情感分析+主题建模+K-Meas聚类+词频统计+词云(景区游客评论情感分析)
请为小H留灯
聚类机器学习支持向量机人工智能深度学习
本文通过情感分析技术对景区游客评论进行深入挖掘,结合数据预处理、情感分类和文本挖掘,分析游客评价与情感倾向。利用朴素贝叶斯和SVM等模型进行情感预测,探讨满意度与情感的关系。通过KMeans聚类和LDA主题分析,提取游客关心的话题,提供优化建议,为未来研究提供方向。1.引言1.1背景与目的1.2旅游业发展与游客评论的重要性2.数据处理与分析2.1数据加载与预处理2.2游客评分与点赞量分析3.评论内
- AI 界的包青天:GaussianNB 智断分类难题
星际编程喵
人工智能分类数据挖掘
前言在机器学习的江湖中,分类算法纷繁复杂,各具特色。有的深不可测,犹如隐世高人的内功心法,让人望而却步;有的则像街头小贩,简单直接却也能精准解决问题。江湖中高手云集,其中有一位侠客,宛如包青天,正气凛然,以公正无私和高效迅捷著称,擅长快速解决分类难题。此侠客正是GaussianNaïveBayes(高斯朴素贝叶斯,简称GaussianNB)。凭借朴素的假设与强大的数学支撑,GaussianNB在分
- 异常控制流学习笔记——fork函数和wait函数
Lunapius
初步理解异常控制流中调用fork函数和wait函数的错误处理在计算机系统中,异常有中断、陷阱、故障和终止四种类别,具体的内容我们不在此处展开,但是无论如何,当异常出现时,计算机系统都会对其进行处理,其大致流程如下图所示:作为初学者,我们平常练习时所编写的代码其实是极为朴素简单的,在代码中加入进行错误处理也不会导致程序难以阅读。但实际上,我们日常生活、工作生产中使用的大部分程序其实都是非常复杂的。当
- 【二分算法】-- 三种二分模板总结
雨雨雨雨点子
算法算法java开发语言leetcode
文章目录1.特点2.学习中的侧重点2.1算法原理2.2模板2.2.1朴素二分模板(easy-->有局限)2.2.2查找左边界的二分模板2.2.3查找右边界的二分模板1.特点二分算法是最恶心,细节最多,最容易写出死循环的算法====但是,一旦掌握了之后,二分算法就是最简单的算法。其实并不是一定要二分,三分,四分也都可以,但是根据概率学中的求期望数学中可知,二分是效率最高的。如果是三分的话,我们就像是
- 哈希基础例题
稠密的连通图
算法复习之字符串字符串算法哈希数据结构hash
文章目录例题一:子串查找例题二:字符串的删除操作例题三:字符串合并操作的应用哈希前置知识请戳这里->哈希绪论昨天我们对哈希的基础知识有了一定的了解,并已经知道了如何求子串、拼接子串的哈希值,今天我们就这两个操作分析一些基础例题,加深理解和掌握。例题一:子串查找LOJ#103.子串查找显然这是一道kmp算法的模板题朴素的做法是枚举文本串的每一个位置作为模式串开始比较的位置。设枚举到主串的位置是iii
- 转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点
qq_43625764
笔记KNN算法随机森林朴素贝叶斯算法机器学习算法决策树
转换器与预估器,KNN算法,朴素贝叶斯算法,决策树,随机森林的特点,优缺点1转换器与预估器实例化转换器fit_transform转换实例化预估器fit将训练集的特征值和目标值传进来fit运行完后,已经把这个模型训练出来了2KNN算法根据你的邻居来推测你的类别,如何确定谁是你的邻居(用距离公式,最常用的是欧式距离)还有曼哈顿距离–求绝对值,明可夫斯基距离(欧式距离和曼哈顿距离的一个退p=1曼哈顿距离
- 决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost 和 LightGBM算法的R语言实现
生信与基因组学
生信分析项目进阶技能合集算法机器学习r语言
基本逻辑(1)使用rnorm函数生成5个特征变量x1到x5,并根据这些特征变量的线性组合生成一个二分类的响应变量y;(2)将生成的数据存储在数据框中,处理缺失值,并将响应变量转换为因子类型;(3)使用决策树、朴素贝叶斯、随机森林、支持向量机、XGBoost和LightGBM六种机器学习模型算法对数据进行训练和评估;(4)将各个模型的准确率和AUC值存储在结果数据框中,并通过柱状图展示结果。1.R包
- 使用Python和机器学习技术对高中物理题目进行分类的示例代码
max500600
python机器学习python分类
以下是一个使用Python和机器学习技术对高中物理题目进行分类的示例代码。我们将使用自然语言处理(NLP)技术处理题目的文本信息,并使用朴素贝叶斯分类器进行分类。步骤概述数据准备:准备包含高中物理题目的数据集,每个题目都有对应的类别标签。文本预处理:对题目文本进行清洗和特征提取。模型训练:使用训练数据训练分类模型。模型评估:使用测试数据评估模型的性能。预测:使用训练好的模型对新的物理题目进行分类。
- 第0节 机器学习与深度学习介绍
汉堡go
李哥深度学习专栏人工智能机器学习神经网络
人工智能:能够感知、推理、行动和适应的程序机器学习:能够随着数据量的增加而不断改进性能的算法(数学上的可解释性但准确率不是百分百,灵活度不高)深度学习:机器学习的一个子集:利用多层神经网络从大量数据中进行学习(设计一个很深的网络架构让机器自己学)(深度学习就是找一个函数f)机器学习算法简介(狭义)一般是基于数学,或者统计学的方法,具有很强的可解释性经典传统机器学习算法:KNN、决策树、朴素贝叶斯一
- 【西瓜书《机器学习》七八九章内容通俗理解】
游戏乐趣
人工智能机器学习人工智能
第七章:贝叶斯分类器7.1贝叶斯决策论基础核心概念:贝叶斯分类器是基于概率来做分类决策的。简单来说,就是根据已知的一些条件,去计算每个类别出现的概率,然后选择概率最大的那个类别作为分类结果。就好比你在猜一个盒子里装的是红球还是蓝球,你可以根据之前从这个盒子里摸球的一些经验(比如摸出红球的次数多),来判断这次盒子里更有可能是红球还是蓝球。例子:假如你要判断一幅图片是猫还是狗。你知道在所有的图片数据里
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- 机器学习之学习笔记
孤城laugh
机器学习学习笔记人工智能python
机器学习-学习笔记1.简介2.算法3.特征工程3.1数据集3.2特征提取3.3特征预处理3.4特征降维4.分类算法4.1`sklearn`转换器和估计器4.2K-近邻算法(KNN)4.3模型选择与调优4.4朴素贝叶斯算法4.5决策树4.6集成学习方法之随机森林5.回归算法5.1线性回归5.2过拟合与欠拟合5.3岭回归5.4逻辑回归(实际上是分类算法,用于解决二分类问题)6.聚类算法1.无监督学习2
- 单源最短路径
陵易居士
数据结构与算法算法图论
目录无负权单源最短路径迪杰斯特拉算法(dijkstra)朴素版迪杰斯特拉小根堆优化版本dijkstra有负权的图的单源最短路径SPFA总结无负权单源最短路径在处理图论相关问题时,经常会遇到求一点到其他点的最短距离是多少的问题,很多实际应用场景的题目也可以转化成求最短路的问题,这里我们先来了解没有负权的图的最短路问题.迪杰斯特拉算法(dijkstra)迪杰斯特拉算法是由dijkstra提出的,它的主
- 排序(数据结构篇)
刃神太酷啦
蓝桥杯C++组C++数据结构
排序(数据结构篇)朴素快排的缺陷:1.基准元素选择不当,递归层数会增加,时间复杂度变高2.当有大量重复元素时,递归层数也会增加如果有一个表达式(x+y)>>1它的意思就是先将整数x和y相加,然后将结果右移一位。这实际上等同于取x和y相加后的结果的一半(向0取整)。
- 代码随想录算法训练营Day57 | 拓扑排序精讲、dijkstra(朴素版)精讲
Harryline-lx
代码随想录算法
文章目录117.软件构建思路与重点47.参加科学大会思路与重点117.软件构建题目链接:117.软件构建讲解链接:代码随想录状态:一遍AC。思路与重点概括来说,给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序也是图论中判断有向无环图的常用方法。拓扑排序模板题。#include#include#include#includeusingnamespacestd;intmain(){in
- 代码随想录算法训练营第58天|拓扑排序精讲、dijkstra(朴素版)精讲
Yinems
算法
打卡Day581.拓扑排序精讲2.dijkstra(朴素版)精讲1.拓扑排序精讲题目链接:拓扑排序精讲文档讲解:代码随想录给出一个有向图,把这个有向图转成线性的排序就叫拓扑排序。拓扑排序要检测这个有向图是否有环,即存在循环依赖的情况,因为这种情况是不能做线性排序的。所以拓扑排序是图论中判断有向无环图的常用方法。拓扑排序的过程,有两步,第一步,找到入度为0的节点,加入结果集;第二步,将该节点从图中移
- 解锁机器学习核心算法|朴素贝叶斯:分类的智慧法则
紫雾凌寒
AI炼金厂#机器学习算法机器学习算法分类朴素贝叶斯python深度学习人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、主成分分析(PCA)、神经网络。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这众多的算法中,朴素贝叶斯算法
- c++滑动窗口与单调队列
wangyuxuan1029
c++算法模版算法
一、解决问题有一个长为n的序列a,以及一个大小为k的窗口。现窗口从左边开始向右滑动,每次滑动一个单位,求每次滑动后窗口中的最大值和最小值。WindowpositionMinimumvalueMaaximumvalue[13-1]-35367-131[3-1-3]5367-3313[-1-35]367-3513-1[-353]67-3513-1-3[536]73613-1-35[367]37朴素做法
- 朴素贝叶斯原理及sklearn中代码实战
Lewis@
sklearn概率论机器学习
朴素贝叶斯(NaiveBayes)是一类基于贝叶斯定理的简单而有效的分类算法。它假设特征之间是相互独立的,即在给定目标变量的情况下,每个特征都不依赖于其他特征。尽管这个假设在实际中很难成立,朴素贝叶斯在许多场景下仍表现得非常好,特别是对于文本分类等高维数据的应用。1.贝叶斯定理贝叶斯定理表明给定一个事件发生的条件下另一个事件发生的概率:P(A∣B)=P(B∣A)⋅P(A)P(B){P(A|B)=\
- 解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃
紫雾凌寒
AI炼金厂机器学习算法支持向量机python深度学习分类人工智能
一、引言在机器学习的庞大算法体系中,有十种算法被广泛认为是最具代表性和实用性的,它们犹如机器学习领域的“十大神器”,各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K-近邻算法、K-平均算法、支持向量机、朴素贝叶斯算法、降维算法、梯度增强算法。它们涵盖了回归、分类、聚类、降维等多个机器学习任务领域,是众多机器学习应用的基础和核心。而在这十大算法中,支持向量机(Suppor
- 机器学习:朴素贝叶斯
小源学AI
人工智能机器学习人工智能朴素贝叶斯
概率1.1定义概率表示随机事件发生可能性大小的一个数值,随机事件指在相同条件下,可能出现也可能不出现的事件。例如:抛硬币:当我们抛硬币时,可以正面朝上也可以反面朝上,正面或反面朝上的可能性被称为概率。理想状态下正反概率都是0.5。掷骰子:掷一个六面的骰子,每个点出现的概率是1/6,因为每个面出现的机会是均等的。抽取商品:一批商品包含良品和次品,随机抽取一件,抽取良品或次品是一个随机事件,经过大量实
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs