回溯:简单来说从一条路往前走,走不通再回来,换一条路走。
以深度优先(dfs)方式搜索解空间
1. 括号生成
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
"((()))", "(()())", "(())()", "()(())", "()()()"
vector generateParenthesis(int n) {
vector vec;
int left = n, right = n;
string str = "";
dfs(vec, str, left, right);
return vec;
}
void dfs(vector& vec, string str, int left, int right) {
if (0 == left && 0 == right) {
vec.push_back(str);
return;
}
if (left > 0) {
dfs(vec, str + '(', left - 1, right);
}
if (right > 0 && left < right) {
dfs(vec, str + ')', left, right - 1);
}
}
一眼就能看出来用 dfs。没有技巧,熟能生巧。
2. ip转换
Given a string containing only digits, restore it by returning all possible valid IP address combinations.
For example:
Given"25525511135",
return["255.255.11.135", "255.255.111.35"]. (Order does not matter)
vector restoreIpAddresses(string s) {
string temp = "";
int count = 0;
vector res;
DFS(res, s, temp, count);
return res;
}
void DFS(vector& res, const string& s, const string& temp, int count)
{
if (count == 3) {
if (isValid(s)) {
res.push_back(temp + s);
}
return;
}
for (int i = 1; i < 4 && i < s.size(); ++i)
{
string sub = s.substr(0, i);
if (isValid(sub))
{
DFS(res, s.substr(i), temp + sub + '.', count + 1);
}
}
}
bool isValid(const string& str)
{
int num = atoi(str.c_str());
if (str.size() > 1)
{
return str[0] != '0' && 0 <= num && num <= 255;
}
return 0 <= num && num <= 255;
}
3. 找子集
Given a collection of integers that might contain duplicates, S, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not contain duplicate subsets.
For example,
If S =[1,2,2], a solution is:
[↵ [2],↵ [1],↵ [1,2,2],↵ [2,2],↵ [1,2],↵ []↵]
vector > subsetsWithDup(vector& S) {
sort(S.begin(), S.end());
vector > res;
vector temp;
DFS(S, 0, res, temp);
return res;
}
void DFS(vector& set, int start, vector >& res, vector& temp)
{
res.push_back(temp);
for (int i = start; i < set.size(); ++i)
{
temp.push_back(set[i]);
DFS(set, i + 1, res, temp);
while (i < set.size() - 1 && set[i] == set[i + 1])
{
++i;
}
temp.pop_back();
}
}
ps:用 dfs 解题形式都差不多,重在理解。