2019-07-30

学习Python的第三天

三国TOP10人物分析

读取小说内容

with open('./novel/threekingdom.txt','r',encoding='utf-8' as f):
words = f.read()
counts={}
excludes = {"将军", "却说", "丞相", "二人", "不可", "荆州", "不能", "如此", "商议",
                "如何", "主公", "军士", "军马", "左右", "次日", "引兵", "大喜", "天下",
                "东吴", "于是", "今日", "不敢", "魏兵", "陛下", "都督", "人马", "不知",
                "孔明曰","玄德曰","刘备","云长"}

分词

words_list=jieba.lcut(words)
print(words_list)
for word in words_list:
if len(word)<=1:
continue
else:
counts[word]=counts.get(word,0)+1
print(len(counts))

排序

items=list(counts.items())
print(items)
def sort_by_count(x)
return x[1]
items.sort(key=sort_by_count,reverse=True)
for i in range(20):
role,count=items[i]
print(role,count)

词语过滤,删除无关词,重复词

counts['孔明'] =  counts['孔明'] +  counts['孔明曰']
counts['玄德'] = counts['玄德'] + counts['玄德曰'] +counts['刘备']
counts['关公'] = counts['关公'] +counts['云长']
for word in excludes:
del counts[word]

得出结论

text = ' '.join(li)
    WordCloud(
        font_path='msyh.ttc',
        background_color='white',
        width=800,
        height=600,
        # 相邻两个重复词之间的匹配
        collocations=False
    ).generate(text).to_file('TOP10.png')

匿名函数

结构
lambda x1, x2....xn: 表达式
sum_num = lambda x1, x2: x1+x2
print(sum_num(2, 3))
参数可以是无限多个,但是表达式只有一个

 name_info_list = [
     ('张三',4500),
     ('李四',9900),
     ('王五',2000),
     ('赵六',5500),
 ]
 name_info_list.sort(key=lambda x:x[1], reverse=True)
 print(name_info_list)
 stu_info = [
     {"name":'zhangsan', "age":18},
   {"name":'lisi', "age":30},
    {"name":'wangwu', "age":99},
     {"name":'tiaqi', "age":3},

 ]

stu_info.sort(key=lambda i:i['age'])
print(stu_info)

列表

筛选出列表中所有的偶数

li = []
 for i in range(10):
     if i%2 == 0:
         li.append(i)
 print(li)
#  使用列表解析
 print([i for i in range(10) if i%2 == 0])

筛选出列表中 大于0 的数

from random import randint
num_list = [randint(-10, 10) for _ in range(10)]
print(num_list)
print([i for i in num_list if i>0])

字典解析

生成100个学生的成绩

stu_grades = {'student{}'.format(i):randint(50, 100) for i in range(1, 101)}
print(stu_grades)

筛选大于 60分的所有学生

print({k: v for k, v in stu_grades.items() if v >60})

导入matplotlib

from matplotlib import pyplot as plt
plt.rcParams["font.sans-serif"] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
import numpy as np

使用100个点 绘制 [0 , 2π]正弦曲线图

.linspace 左闭右闭区间的等差数列

 x = np.linspace(0, 2*np.pi, num=100)
 print(x)
 y = np.sin(x)
 cosy = np.cos(x)
 plt.plot(x, y, color='g', linestyle='--',label='sin(x)')
 plt.plot(x, cosy, color='r',label='cos(x)')
 plt.xlabel('时间(s)')
 plt.ylabel('电压(V)')
 plt.title('欢迎来到python世界')
 plt.legend()
 plt.show()

柱状图

 import string
 from random import randint
print(string.ascii_uppercase[0:6])
 x = ['口红{}'.format(x) for x in string.ascii_uppercase[:5] ]
 y = [randint(200, 500) for _ in range(5)]
 print(x)
 print(y)
 plt.xlabel('口红品牌')
 plt.ylabel('价格(元)')
 plt.bar(x, y)
 plt.show()

饼图

 from random import randint
 import string
 counts = [randint(3500, 9000) for _ in range(6)]
 labels = ['员工{}'.format(x) for x in string.ascii_lowercase[:6] ]

 explode = [0.1,0,0, 0, 0,0]
 colors = ['red', 'purple','blue', 'yellow','gray','green']
 plt.pie(counts,explode = explode,shadow=True, 
labels=labels, autopct = '%1.1f%%',colors=colors)
 plt.legend(loc=2)
 plt.axis('equal')
 plt.show()

散点图
均值为 0 标准差为1 的正太分布数据

 x = np.random.normal(0, 1, 100)
 y = np.random.normal(0, 1, 100)
 plt.scatter(x, y)
 plt.show()
x = np.random.normal(0, 1, 1000000)
y = np.random.normal(0, 1, 1000000)
plt.scatter(x, y, alpha=0.1)
plt.show()

你可能感兴趣的:(2019-07-30)