设备号


基本信息

  1. 设备号的数据类型:dev_t
    typedef unsigned int dev_t;

  2. 设备号是一个统称,分为主设备号和次设备号。
    主设备号保存在高12位
    次设备号保存在低20位

  3. 设备号的功能
    主设备号:一个设备驱动对应一个主设备号。应用程序通过设备文件中的主设备号在内核中找到对应的设备驱动。
    次设备号:一个设备对应一个次设备号。当一个驱动程序管理多个设备时,驱动程序通过设备文件中的次设备号,找到需要操作的设备。

操作宏

/* 通过已知的主次设备号,合成设备号 */
dev_t dev = MKDEV(major, minor);   
/* 通过已知的设备号,获取主设备号 */
major = MAJOR(dev);   
/* 通过已知的设备号,获取次设备号 */
minor = MINOR(dev);    

上述宏的实现:

#define MINORBITS   20
#define MINORMASK   ((1U << MINORBITS) - 1)

#define MAJOR(dev)  ((unsigned int) ((dev) >> MINORBITS))
#define MINOR(dev)  ((unsigned int) ((dev) & MINORMASK))
#define MKDEV(ma,mi)    (((ma) << MINORBITS) | (mi))

相关结构体

kernel用来保存设备号的结构体char_device_struct,来来看看这个结构体:

static struct char_device_struct {
    struct char_device_struct *next;
    unsigned int major;
    unsigned int baseminor;
    int minorct;
    char name[64];
    struct cdev *cdev;      /* will die */
} *chrdevs[CHRDEV_MAJOR_HASH_SIZE];

内核为了管理设备号,维护了一个char_device_struct结构的散列表——chrdevs。

设备号_第1张图片
设备号示意图

chrdevs的每一个成员,都是一个以char_device_struct结构体指针为元素的 单项链表头指针
每条链表中的所有元素拥有相同的主设备号,及该链表所在chrdevs数组的下标。

操作函数

内核提供的可以用来申请设备号的函数,知道的有三个。专门用来申请设备号的函数有两个,分别是:
register_chrdev_region()alloc_chrdev_region()
name是设备名称,可通过cat /proc/devices查看

如果我们明确的知道所需要的设备号时,可以使用下面的函数:

/**
 * register_chrdev_region() - register a range of device numbers
 * @from: the first in the desired range of device numbers; must include
 *        the major number.
 * @count: the number of consecutive device numbers required
 * @name: the name of the device or driver.
 *
 * Return value is zero on success, a negative error code on failure.
 */
int register_chrdev_region(dev_t from, unsigned count, const char *name)
{
    struct char_device_struct *cd;
    dev_t to = from + count;
    dev_t n, next;

    for (n = from; n < to; n = next) {
        next = MKDEV(MAJOR(n)+1, 0);
        if (next > to)
            next = to;
        cd = __register_chrdev_region(MAJOR(n), MINOR(n),
                   next - n, name);
        if (IS_ERR(cd))
            goto fail;
    }
    return 0;
fail:
    to = n;
    for (n = from; n < to; n = next) {
        next = MKDEV(MAJOR(n)+1, 0);
        kfree(__unregister_chrdev_region(MAJOR(n), MINOR(n), next - n));
    }
    return PTR_ERR(cd);
}

需要注意的一个细节是,使用next和to进行比较,如果next

如果需要内核帮我们动态的分配设备号,使用下面的函数:

/**
 * alloc_chrdev_region() - register a range of char device numbers
 * @dev: output parameter for first assigned number
 * @baseminor: first of the requested range of minor numbers
 * @count: the number of minor numbers required
 * @name: the name of the associated device or driver
 *
 * Allocates a range of char device numbers.  The major number will be
 * chosen dynamically, and returned (along with the first minor number)
 * in @dev.  Returns zero or a negative error code.
 */
int alloc_chrdev_region(dev_t *dev, unsigned baseminor, unsigned count,
            const char *name)
{
    struct char_device_struct *cd;
    cd = __register_chrdev_region(0, baseminor, count, name);
    if (IS_ERR(cd))
        return PTR_ERR(cd);
    *dev = MKDEV(cd->major, cd->baseminor);
    return 0;
}

上面个两个申请设备号的函数都调用了__register_chrdev_region函数,下面具体看一下这个真正分配设备号的函数:

/*
 * Register a single major with a specified minor range.
 *
 * If major == 0 this functions will dynamically allocate a major and return
 * its number.
 *
 * If major > 0 this function will attempt to reserve the passed range of
 * minors and will return zero on success.
 *
 * Returns a -ve errno on failure.
 */
static struct char_device_struct *
__register_chrdev_region(unsigned int major, unsigned int baseminor,
               int minorct, const char *name)
{
    struct char_device_struct *cd, **cp;
    int ret = 0;
    int i;

    cd = kzalloc(sizeof(struct char_device_struct), GFP_KERNEL);
    if (cd == NULL)
        return ERR_PTR(-ENOMEM);

    mutex_lock(&chrdevs_lock);

    /* temporary */
    if (major == 0) {
        for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) {
            if (chrdevs[i] == NULL)
                break;
        }

        if (i == 0) {
            ret = -EBUSY;
            goto out;
        }
        major = i;
    }

    cd->major = major;
    cd->baseminor = baseminor;
    cd->minorct = minorct;
    strlcpy(cd->name, name, sizeof(cd->name));

    i = major_to_index(major);

    for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
        if ((*cp)->major > major ||
            ((*cp)->major == major &&
             (((*cp)->baseminor >= baseminor) ||
              ((*cp)->baseminor + (*cp)->minorct > baseminor))))
            break;

    /* Check for overlapping minor ranges.  */
    if (*cp && (*cp)->major == major) {
        int old_min = (*cp)->baseminor;
        int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
        int new_min = baseminor;
        int new_max = baseminor + minorct - 1;

        /* New driver overlaps from the left.  */
        if (new_max >= old_min && new_max <= old_max) {
            ret = -EBUSY;
            goto out;
        }

        /* New driver overlaps from the right.  */
        if (new_min <= old_max && new_min >= old_min) {
            ret = -EBUSY;
            goto out;
        }
    }

    cd->next = *cp;
    *cp = cd;
    mutex_unlock(&chrdevs_lock);
    return cd;
out:
    mutex_unlock(&chrdevs_lock);
    kfree(cd);
    return ERR_PTR(ret);
}

__register_chrdev_region第一个参数是主设备号,在alloc_chrdev_region中第一个参数给了0,也就是要求动态分配主设备号。

    /* temporary */
    if (major == 0) {
        for (i = ARRAY_SIZE(chrdevs)-1; i > 0; i--) {
            if (chrdevs[i] == NULL)
                break;
        }

        if (i == 0) {
            ret = -EBUSY;
            goto out;
        }
        major = i;
    }

__register_chrdev_region第一个参数是主设备号,如果传递0,进入上述if语句,从最大值(ARRAY_SIZE(chrdevs)的大小为#define CHRDEV_MAJOR_HASH_SIZE 255)开始遍历chrdevs数组,直到chrdevs[1]或者遇到chrdevspi[ == NULL为止。(也就是说,主设备号0和255不会被动态分配
如果1到244没有空闲的主设备号,则分配失败。

i = major_to_index(major);

for (cp = &chrdevs[i]; *cp; cp = &(*cp)->next)
    if ((*cp)->major > major ||
        ((*cp)->major == major &&
         (((*cp)->baseminor >= baseminor) ||
          ((*cp)->baseminor + (*cp)->minorct > baseminor))))
        break;

major_to_index()是个取模操作:

/* fs/char_dev.c */
#define CHRDEV_MAJOR_HASH_SIZE  255
/* index in the above */
static inline int major_to_index(unsigned major)
{
    return major % CHRDEV_MAJOR_HASH_SIZE;
}

由这个函数也可以了解到,主设备号可以大于255。当然了如果是动态分配,是不会出现这种情况的。

上述的for循环的目的,是为即将被分配的设备号寻找一个合适的位置(*cp指向的位置)。
上述for循环break的条件:

  • *cp == NULL。(cd节点放到*cp的位置就可以了)
  • *cp指向的节点的major > 即将分配的major。(cd节点放到*cp节点前面一个位置)
  • *cp指向的节点的major == 即将分配的major;*cp指向的节点次设备号的起始值 >= 即将分配的设备号的次设备号的起始值。(需要进一步check)
  • *cp指向的节点的major == 即将分配的major;*cp指向节点的次设备号的结束值 > 即将分配的设备号的次设备号的起始值。(需要进一步check)

上面的for循环有两个遗留问题需要进一步check,下面的就是检查minior是否重叠的代码:

/* Check for overlapping minor ranges.  */
if (*cp && (*cp)->major == major) {
    int old_min = (*cp)->baseminor;
    int old_max = (*cp)->baseminor + (*cp)->minorct - 1;
    int new_min = baseminor;
    int new_max = baseminor + minorct - 1;

    /* New driver overlaps from the left.  */
    if (new_max >= old_min && new_max <= old_max) {
        ret = -EBUSY;
        goto out;
    }

    /* New driver overlaps from the right.  */
    if (new_min <= old_max && new_min >= old_min) {
        ret = -EBUSY;
        goto out;
    }
}

这就是两个集合是否重叠的问题。画图更容易理解。

cd->next = *cp;
*cp = cd;
mutex_unlock(&chrdevs_lock);
return cd;

将cd插入到*cp指向的节点前面。

最后是设备号释放的方法:

/**
 * unregister_chrdev_region() - unregister a range of device numbers
 * @from: the first in the range of numbers to unregister
 * @count: the number of device numbers to unregister
 *
 * This function will unregister a range of @count device numbers,
 * starting with @from.  The caller should normally be the one who
 * allocated those numbers in the first place...
 */
void unregister_chrdev_region(dev_t from, unsigned count);

你可能感兴趣的:(设备号)