题目:
两支地区ACM比赛的队伍决定为了国际决赛而在一起集训. 他们约定在某天的 X 时到 Y 时的某一时刻相会. 但由于他们很少按时到 (有的队伍比赛那天都会迟到),
他们没有设定一个确切的相遇时间. 然而, 它们约定先到的队伍要等待 Z 分钟(经过计算,他们认为如果过了这么久还没等到那么极有可能另一支队不会来了).
假如两支队都会在X 到Y 点的某一时刻出现 (不一定整点,整分,可以是任意时刻), 计算他们能够相会的概率.
输入:
两个整数X,Y(0<=X<Y<=24),一个实数Z( 0 < Z <= 60*(Y-X) ).
输出:
一个实数,保留8位小数
Sample Input
11 12 20.0
Sample Output
0.5555556
简单的几何概型
代码:
#include<cstdio> double x,y,z,dist; int main(){ scanf("%lf%lf%lf",&x,&y,&z); z=z/60; dist=y-x; printf("%.8lf\n",(dist-z)/dist*z/dist*2+z*z/dist/dist ); }