OkHttp源码分析

  • 本文概述

    结合使用从源码层面分析OkHttp的原理。

  • 使用回顾

    public static String getByOkHttp(String url) throws IOException {
        OkHttpClient client = new OkHttpClient();
        Request request = new Request.Builder()
                .url(url)
                .build();
    
        try (Response response = client.newCall(request).execute()) {
            return Objects.requireNonNull(response.body()).string();
        }
    }
    
    public static final MediaType JSON
            = MediaType.get("application/json; charset=utf-8");
    
    public static String postByOkHttp(String url, String json) throws IOException {
        OkHttpClient client = new OkHttpClient();
        RequestBody body = RequestBody.create(json, JSON);
        Request request = new Request.Builder()
                .url(url)
                .post(body)
                .build();
        try (Response response = client.newCall(request).execute()) {
            return Objects.requireNonNull(response.body()).string();
        }
    }
    

    简单回顾一下OkHttp的使用api,在Retrofit出现之前,我们对这个用法并不陌生,相比于HttpClient,参数可以直接使用json添加,因为json是通用格式且易解析,不需要像HttpClient那样requestBody里面都是a=b这样去存,通常的操作都是bean->json,json->bean,所以这更合理;request和requestConfig可以放在一起链式调用,调用过程更简洁。OkHttp淘汰了HttpClient成为主流网络请求框架的原因可能不止于此,随着源码再来看看有什么不同。

  • 源码分析

    首先,OkHttpClient的构造方法里:

    public OkHttpClient() {
      this(new Builder());
    }
    
    ......
      
    public Builder() {
          dispatcher = new Dispatcher();
          protocols = DEFAULT_PROTOCOLS;
          connectionSpecs = DEFAULT_CONNECTION_SPECS;
          eventListenerFactory = EventListener.factory(EventListener.NONE);
          proxySelector = ProxySelector.getDefault();
          if (proxySelector == null) {
            proxySelector = new NullProxySelector();
          }
          cookieJar = CookieJar.NO_COOKIES;
          socketFactory = SocketFactory.getDefault();
          hostnameVerifier = OkHostnameVerifier.INSTANCE;
          certificatePinner = CertificatePinner.DEFAULT;
          proxyAuthenticator = Authenticator.NONE;
          authenticator = Authenticator.NONE;
          connectionPool = new ConnectionPool();
          dns = Dns.SYSTEM;
          followSslRedirects = true;
          followRedirects = true;
          retryOnConnectionFailure = true;
          callTimeout = 0;
          connectTimeout = 10_000;
          readTimeout = 10_000;
          writeTimeout = 10_000;
          pingInterval = 0;
    }
    

    可以看到在Builder的构造方法里,一些必须的参数都初始化了默认值,这里的参数暂时先不管,用到的时候才能知道它的意义。

    RequestBody.create方法会返回一个RequestBody对象:

    /**
       * Returns a new request body that transmits {@code content}. If {@code contentType} is non-null
       * and lacks a charset, this will use UTF-8.
    */
    public static RequestBody create(@Nullable MediaType contentType, String content) {
        Charset charset = UTF_8;
        if (contentType != null) {
          charset = contentType.charset();
          if (charset == null) {
            charset = UTF_8;
            contentType = MediaType.parse(contentType + "; charset=utf-8");
          }
        }
        byte[] bytes = content.getBytes(charset);
        return create(contentType, bytes);
    }
    
    ......
      
    /** Returns a new request body that transmits {@code content}. */
    public static RequestBody create(final @Nullable MediaType contentType, final byte[] content) {
        return create(contentType, content, 0, content.length);
    }
    
    ......
    
    /** Returns a new request body that transmits {@code content}. */
    public static RequestBody create(final @Nullable MediaType contentType, final byte[] content,
        final int offset, final int byteCount) {
      if (content == null) throw new NullPointerException("content == null");
      Util.checkOffsetAndCount(content.length, offset, byteCount);
      return new RequestBody() {
        @Override public @Nullable MediaType contentType() {
          return contentType;
        }
    
        @Override public long contentLength() {
          return byteCount;
        }
    
        @Override public void writeTo(BufferedSink sink) throws IOException {
          sink.write(content, offset, byteCount);
        }
      };
    }
    

    匿名类对象RequestBody有一个writeTo方法,这里猜测应该是socket网络写入的入口,具体再往下看。

    Request的构建就是一系列的解析和参数赋值,这里不深究这些细节,看一下client.newCall(request):

    /**
     * Prepares the {@code request} to be executed at some point in the future.
     */
    @Override public Call newCall(Request request) {
      return RealCall.newRealCall(this, request, false /* for web socket */);
    }
    
    static RealCall newRealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
      // Safely publish the Call instance to the EventListener.
      RealCall call = new RealCall(client, originalRequest, forWebSocket);
      call.transmitter = new Transmitter(client, call);
      return call;
    }
    

    返回了一个RealCall对象,realCall.execute就会返回一个Response了,所以这个execute就是调用网络请求的入口:

    @Override public Response execute() throws IOException {
      synchronized (this) {
      if (executed) throw new IllegalStateException("Already Executed");
        executed = true;
      }
      transmitter.timeoutEnter();
      transmitter.callStart();
      try {
        client.dispatcher().executed(this);
        return getResponseWithInterceptorChain();
      } finally {
        client.dispatcher().finished(this);
      }
    }
    

    首先调用transmitter的timeoutEnter方法:

    public void timeoutEnter() {
      timeout.enter();
    }
    
    private final AsyncTimeout timeout = new AsyncTimeout() {
      @Override protected void timedOut() {
        cancel();
      }
    };
    

    所以去AsyncTimeOut里面找enter方法:

    public final void enter() {
      if (inQueue) throw new IllegalStateException("Unbalanced enter/exit");
      long timeoutNanos = timeoutNanos();
      boolean hasDeadline = hasDeadline();
      if (timeoutNanos == 0 && !hasDeadline) {
        return; // No timeout and no deadline? Don't bother with the queue.
      }
      inQueue = true;
      scheduleTimeout(this, timeoutNanos, hasDeadline);
    }
    

    这里判断如果没有设置call超时时间和deadline则不scheduleTimeout,值得一提的是,以timeoutNanos为例:

    public Transmitter(OkHttpClient client, Call call) {
      this.client = client;
      this.connectionPool = Internal.instance.realConnectionPool(client.connectionPool());
      this.call = call;
      this.eventListener = client.eventListenerFactory().create(call);
      this.timeout.timeout(client.callTimeoutMillis(), MILLISECONDS);
    }
    

    timeoutNanos是client.callTimeoutMillis的值,设置这个值我们需要改一下okhttpClient的构造方式:

    //设置call的timeout时长是30秒
    OkHttpClient client = new OkHttpClient().newBuilder().callTimeout(30000, TimeUnit.MILLISECONDS).build();
    

    再回到enter,走到scheduleTimeout方法:

    private static synchronized void scheduleTimeout(
        AsyncTimeout node, long timeoutNanos, boolean hasDeadline) {
      // Start the watchdog thread and create the head node when the first timeout is scheduled.
      if (head == null) {
        head = new AsyncTimeout();
        new Watchdog().start();
      }
    
      long now = System.nanoTime();
      if (timeoutNanos != 0 && hasDeadline) {
        // Compute the earliest event; either timeout or deadline. Because nanoTime can wrap around,
        // Math.min() is undefined for absolute values, but meaningful for relative ones.
        node.timeoutAt = now + Math.min(timeoutNanos, node.deadlineNanoTime() - now);
      } else if (timeoutNanos != 0) {
        node.timeoutAt = now + timeoutNanos;
      } else if (hasDeadline) {
        node.timeoutAt = node.deadlineNanoTime();
      } else {
        throw new AssertionError();
      }
    
      // Insert the node in sorted order.
      long remainingNanos = node.remainingNanos(now);
      for (AsyncTimeout prev = head; true; prev = prev.next) {
        if (prev.next == null || remainingNanos < prev.next.remainingNanos(now)) {
          node.next = prev.next;
          prev.next = node;
          if (prev == head) {
            AsyncTimeout.class.notify(); // Wake up the watchdog when inserting at the front.
          }
          break;
        }
      }
    }
    

    这里的工作是有一个链表记录着所有的call请求,如果当前请求是第一个则即刻开启一个线程去开始倒计时,设置当前请求的timeoutAt(截止时间),并根据链表中截止时间的先后顺序把它插入到链表中适当的位置。

    继续往下看,接下来是transmitter.callStart():

    public void callStart() {
      this.callStackTrace = Platform.get().getStackTraceForCloseable("response.body().close()");
      eventListener.callStart(call);
    }
    

    eventListener是哪里来的:

    public Transmitter(OkHttpClient client, Call call) {
      this.client = client;
      this.connectionPool = Internal.instance.realConnectionPool(client.connectionPool());
      this.call = call;
      this.eventListener = client.eventListenerFactory().create(call);
      this.timeout.timeout(client.callTimeoutMillis(), MILLISECONDS);
    }
    

    因为我们没有手动设置,所以client.eventListenerFactory()是Builder构造方法里默认的参数,通过EventListener.factory(EventListener.NONE)构造,通过查找发现EventListener.NONE的callStart是一个空实现,所以在这里没有意义,继续看client.dispatcher().executed(this):

    /** Used by {@code Call#execute} to signal it is in-flight. */
    synchronized void executed(RealCall call) {
      runningSyncCalls.add(call);
    }
    

    runningSyncCalls保存这个call。然后调用getResponseWithInterceptorChain:

    Response getResponseWithInterceptorChain() throws IOException {
      // Build a full stack of interceptors.
      List interceptors = new ArrayList<>();
      interceptors.addAll(client.interceptors());
      interceptors.add(new RetryAndFollowUpInterceptor(client));
      interceptors.add(new BridgeInterceptor(client.cookieJar()));
      interceptors.add(new CacheInterceptor(client.internalCache()));
      interceptors.add(new ConnectInterceptor(client));
      if (!forWebSocket) {
        interceptors.addAll(client.networkInterceptors());
      }
      interceptors.add(new CallServerInterceptor(forWebSocket));
    
      Interceptor.Chain chain = new RealInterceptorChain(interceptors, transmitter, null, 0,
          originalRequest, this, client.connectTimeoutMillis(),
          client.readTimeoutMillis(), client.writeTimeoutMillis());
    
      boolean calledNoMoreExchanges = false;
      try {
        Response response = chain.proceed(originalRequest);
        if (transmitter.isCanceled()) {
          closeQuietly(response);
          throw new IOException("Canceled");
        }
        return response;
      } catch (IOException e) {
        calledNoMoreExchanges = true;
        throw transmitter.noMoreExchanges(e);
      } finally {
        if (!calledNoMoreExchanges) {
          transmitter.noMoreExchanges(null);
        }
      }
    }
    

    前面设置一系列intercepator,然后构造一个RealInterceptorChain对象,并调用它的proceed方法:

    public Response proceed(Request request, Transmitter transmitter, @Nullable Exchange exchange)
        throws IOException {
      if (index >= interceptors.size()) throw new AssertionError();
    
      calls++;
    
      // If we already have a stream, confirm that the incoming request will use it.
      if (this.exchange != null && !this.exchange.connection().supportsUrl(request.url())) {
        throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
            + " must retain the same host and port");
      }
    
      // If we already have a stream, confirm that this is the only call to chain.proceed().
      if (this.exchange != null && calls > 1) {
        throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
            + " must call proceed() exactly once");
      }
    
      // Call the next interceptor in the chain.
      RealInterceptorChain next = new RealInterceptorChain(interceptors, transmitter, exchange,
          index + 1, request, call, connectTimeout, readTimeout, writeTimeout);
      Interceptor interceptor = interceptors.get(index);
      Response response = interceptor.intercept(next);
    
      // Confirm that the next interceptor made its required call to chain.proceed().
      if (exchange != null && index + 1 < interceptors.size() && next.calls != 1) {
        throw new IllegalStateException("network interceptor " + interceptor
            + " must call proceed() exactly once");
      }
    
      // Confirm that the intercepted response isn't null.
      if (response == null) {
        throw new NullPointerException("interceptor " + interceptor + " returned null");
      }
    
      if (response.body() == null) {
        throw new IllegalStateException(
            "interceptor " + interceptor + " returned a response with no body");
      }
    
      return response;
    }
    

    response是通过intercaptor.intercept()方法获得的,还记得之前getResponseWithInterceptorChain方法里设置的一系列intercept吗,这里我们不关注自定义的interceptor,只考虑必须设置的、源码里固定的几个interceptor,根据getResponseWithInterceptorChain方法里的添加顺序如下:

    interceptors.add(new RetryAndFollowUpInterceptor(client));
    interceptors.add(new BridgeInterceptor(client.cookieJar()));
    interceptors.add(new CacheInterceptor(client.internalCache()));
    interceptors.add(new ConnectInterceptor(client));
    if (!forWebSocket) {
      //这里的forWebSocket是false,但是client.networkInterceptors是空的
      interceptors.addAll(client.networkInterceptors());
    }
    interceptors.add(new CallServerInterceptor(forWebSocket));
    

    首先RealInterceptorChain参数中index是0,所以在proceed中interceptors.get(index)就是RetryAndFollowUpInterceptor,执行它的intercept方法,传入的参数是持有下一个interceptor(也就是BridgeInterceptor)的RealInterceptorChain:

    @Override public Response intercept(Chain chain) throws IOException {
      Request request = chain.request();
      RealInterceptorChain realChain = (RealInterceptorChain) chain;
      Transmitter transmitter = realChain.transmitter();
    
      int followUpCount = 0;
      Response priorResponse = null;
      while (true) {
        transmitter.prepareToConnect(request);
    
        if (transmitter.isCanceled()) {
          throw new IOException("Canceled");
        }
    
        Response response;
        boolean success = false;
        try {
          response = realChain.proceed(request, transmitter, null);
          success = true;
        } catch (RouteException e) {
          // The attempt to connect via a route failed. The request will not have been sent.
          if (!recover(e.getLastConnectException(), transmitter, false, request)) {
            throw e.getFirstConnectException();
          }
          continue;
        } catch (IOException e) {
          // An attempt to communicate with a server failed. The request may have been sent.
          boolean requestSendStarted = !(e instanceof ConnectionShutdownException);
          if (!recover(e, transmitter, requestSendStarted, request)) throw e;
          continue;
        } finally {
          // The network call threw an exception. Release any resources.
          if (!success) {
            transmitter.exchangeDoneDueToException();
          }
        }
    
        // Attach the prior response if it exists. Such responses never have a body.
        if (priorResponse != null) {
          response = response.newBuilder()
              .priorResponse(priorResponse.newBuilder()
                      .body(null)
                      .build())
              .build();
        }
    
        Exchange exchange = Internal.instance.exchange(response);
        Route route = exchange != null ? exchange.connection().route() : null;
        Request followUp = followUpRequest(response, route);
    
        if (followUp == null) {
          if (exchange != null && exchange.isDuplex()) {
            transmitter.timeoutEarlyExit();
          }
          return response;
        }
    
        RequestBody followUpBody = followUp.body();
        if (followUpBody != null && followUpBody.isOneShot()) {
          return response;
        }
    
        closeQuietly(response.body());
        if (transmitter.hasExchange()) {
          exchange.detachWithViolence();
        }
    
        if (++followUpCount > MAX_FOLLOW_UPS) {
          throw new ProtocolException("Too many follow-up requests: " + followUpCount);
        }
    
        request = followUp;
        priorResponse = response;
      }
    }
    

    看见while(true)了吗,这就是方法名Retry的意义。

    transmitter.prepareToConnect(request)就是设置一些属性,这些属性目前也不明确他们的含义,所以暂时先不管。

    关键代码response = realChain.proceed(request, transmitter, null)把逻辑又带到了之前RealInterceptorChain的proceed方法里,所以和之前一样,只不过现在的interceptors.get(index)变成了BridgeInterceptor,next变成了持有下一个interceptor(CacheInterceptor)的RealInterceptorChain,所以此时走到了BridgeInterceptor的intercept方法:

    @Override public Response intercept(Chain chain) throws IOException {
      Request userRequest = chain.request();
      Request.Builder requestBuilder = userRequest.newBuilder();
    
      RequestBody body = userRequest.body();
      if (body != null) {
        MediaType contentType = body.contentType();
        if (contentType != null) {
          requestBuilder.header("Content-Type", contentType.toString());
        }
    
        long contentLength = body.contentLength();
        if (contentLength != -1) {
          requestBuilder.header("Content-Length", Long.toString(contentLength));
          requestBuilder.removeHeader("Transfer-Encoding");
        } else {
          requestBuilder.header("Transfer-Encoding", "chunked");
          requestBuilder.removeHeader("Content-Length");
        }
      }
    
      if (userRequest.header("Host") == null) {
        requestBuilder.header("Host", hostHeader(userRequest.url(), false));
      }
    
      if (userRequest.header("Connection") == null) {
        requestBuilder.header("Connection", "Keep-Alive");
      }
    
      // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
      // the transfer stream.
      boolean transparentGzip = false;
      if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
        transparentGzip = true;
        requestBuilder.header("Accept-Encoding", "gzip");
      }
    
      List cookies = cookieJar.loadForRequest(userRequest.url());
      if (!cookies.isEmpty()) {
        requestBuilder.header("Cookie", cookieHeader(cookies));
      }
    
      if (userRequest.header("User-Agent") == null) {
        requestBuilder.header("User-Agent", Version.userAgent());
      }
    
      Response networkResponse = chain.proceed(requestBuilder.build());
    
      HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
      Response.Builder responseBuilder = networkResponse.newBuilder()
          .request(userRequest);
    
      if (transparentGzip
          && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
          && HttpHeaders.hasBody(networkResponse)) {
        GzipSource responseBody = new GzipSource(networkResponse.body().source());
        Headers strippedHeaders = networkResponse.headers().newBuilder()
            .removeAll("Content-Encoding")
            .removeAll("Content-Length")
            .build();
        responseBuilder.headers(strippedHeaders);
        String contentType = networkResponse.header("Content-Type");
        responseBuilder.body(new RealResponseBody(contentType, -1L, Okio.buffer(responseBody)));
      }
    
      return responseBuilder.build();
    }
    

    可以看到,在chain.proceed(requestBuilder.build())之前的代码就是给request设置一系列header。

    按照递归调用逻辑,此时的主角变成了CacheInterceptor,它的intercept方法如下:

    @Override public Response intercept(Chain chain) throws IOException {
      Response cacheCandidate = cache != null
          ? cache.get(chain.request())
          : null;
    
      long now = System.currentTimeMillis();
    
      CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
      Request networkRequest = strategy.networkRequest;
      Response cacheResponse = strategy.cacheResponse;
    
      if (cache != null) {
        cache.trackResponse(strategy);
      }
    
      if (cacheCandidate != null && cacheResponse == null) {
        closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
      }
    
      // If we're forbidden from using the network and the cache is insufficient, fail.
      if (networkRequest == null && cacheResponse == null) {
        return new Response.Builder()
            .request(chain.request())
            .protocol(Protocol.HTTP_1_1)
            .code(504)
            .message("Unsatisfiable Request (only-if-cached)")
            .body(Util.EMPTY_RESPONSE)
            .sentRequestAtMillis(-1L)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
      }
    
      // If we don't need the network, we're done.
      if (networkRequest == null) {
        return cacheResponse.newBuilder()
            .cacheResponse(stripBody(cacheResponse))
            .build();
      }
    
      Response networkResponse = null;
      try {
        networkResponse = chain.proceed(networkRequest);
      } finally {
        // If we're crashing on I/O or otherwise, don't leak the cache body.
        if (networkResponse == null && cacheCandidate != null) {
          closeQuietly(cacheCandidate.body());
        }
      }
    
      // If we have a cache response too, then we're doing a conditional get.
      if (cacheResponse != null) {
        if (networkResponse.code() == HTTP_NOT_MODIFIED) {
          Response response = cacheResponse.newBuilder()
              .headers(combine(cacheResponse.headers(), networkResponse.headers()))
              .sentRequestAtMillis(networkResponse.sentRequestAtMillis())
              .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
              .cacheResponse(stripBody(cacheResponse))
              .networkResponse(stripBody(networkResponse))
              .build();
          networkResponse.body().close();
    
          // Update the cache after combining headers but before stripping the
          // Content-Encoding header (as performed by initContentStream()).
          cache.trackConditionalCacheHit();
          cache.update(cacheResponse, response);
          return response;
        } else {
          closeQuietly(cacheResponse.body());
        }
      }
    
      Response response = networkResponse.newBuilder()
          .cacheResponse(stripBody(cacheResponse))
          .networkResponse(stripBody(networkResponse))
          .build();
    
      if (cache != null) {
        if (HttpHeaders.hasBody(response) && CacheStrategy.isCacheable(response, networkRequest)) {
          // Offer this request to the cache.
          CacheRequest cacheRequest = cache.put(response);
          return cacheWritingResponse(cacheRequest, response);
        }
    
        if (HttpMethod.invalidatesCache(networkRequest.method())) {
          try {
            cache.remove(networkRequest);
          } catch (IOException ignored) {
            // The cache cannot be written.
          }
        }
      }
    
      return response;
    }
    

    在chain.proceed(requestBuilder.build())之前的代码就是优先从缓存中读取response,如果没有,则继续往下走,我们当这是此request的第一次请求,所以接下来的就是ConnectInterceptor的intercept:

     @Override public Response intercept(Chain chain) throws IOException {
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        Request request = realChain.request();
        Transmitter transmitter = realChain.transmitter();
    
        // We need the network to satisfy this request. Possibly for validating a conditional GET.
          //所以GET是不安全的
        boolean doExtensiveHealthChecks = !request.method().equals("GET");
        Exchange exchange = transmitter.newExchange(chain, doExtensiveHealthChecks);
    
        return realChain.proceed(request, transmitter, exchange);
      }
    }
    

    通过transmitter.newExchange创建一个Exchange:

    /** Returns a new exchange to carry a new request and response. */
    Exchange newExchange(Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
      synchronized (connectionPool) {
        if (noMoreExchanges) {
          throw new IllegalStateException("released");
        }
        if (exchange != null) {
          throw new IllegalStateException("cannot make a new request because the previous response "
              + "is still open: please call response.close()");
        }
      }
    
      ExchangeCodec codec = exchangeFinder.find(client, chain, doExtensiveHealthChecks);
      Exchange result = new Exchange(this, call, eventListener, exchangeFinder, codec);
    
      synchronized (connectionPool) {
        this.exchange = result;
        this.exchangeRequestDone = false;
        this.exchangeResponseDone = false;
        return result;
      }
    }
    

    然后找到最后一个CallServerInterceptor,看一下它的intercept方法:

    @Override public Response intercept(Chain chain) throws IOException {
      RealInterceptorChain realChain = (RealInterceptorChain) chain;
      Exchange exchange = realChain.exchange();
      Request request = realChain.request();
    
      long sentRequestMillis = System.currentTimeMillis();
    
      exchange.writeRequestHeaders(request);
    
      boolean responseHeadersStarted = false;
      Response.Builder responseBuilder = null;
      if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
        // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
        // Continue" response before transmitting the request body. If we don't get that, return
        // what we did get (such as a 4xx response) without ever transmitting the request body.
        //
        if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
          exchange.flushRequest();
          responseHeadersStarted = true;
          exchange.responseHeadersStart();
          responseBuilder = exchange.readResponseHeaders(true);
        }
    
        if (responseBuilder == null) {
          //如果为true则先把缓冲区的内容发送出去
          if (request.body().isDuplex()) {
            // Prepare a duplex body so that the application can send a request body later.
            exchange.flushRequest();
            BufferedSink bufferedRequestBody = Okio.buffer(
                exchange.createRequestBody(request, true));
            request.body().writeTo(bufferedRequestBody);
          } else {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            BufferedSink bufferedRequestBody = Okio.buffer(
                exchange.createRequestBody(request, false));
            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
          }
        } else {
          exchange.noRequestBody();
          if (!exchange.connection().isMultiplexed()) {
            // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection
            // from being reused. Otherwise we're still obligated to transmit the request body to
            // leave the connection in a consistent state.
            exchange.noNewExchangesOnConnection();
          }
        }
      } else {
        exchange.noRequestBody();
      }
    
      if (request.body() == null || !request.body().isDuplex()) {
        exchange.finishRequest();
      }
    
      if (!responseHeadersStarted) {
        exchange.responseHeadersStart();
      }
    
      if (responseBuilder == null) {
        responseBuilder = exchange.readResponseHeaders(false);
      }
    
      Response response = responseBuilder
          .request(request)
          .handshake(exchange.connection().handshake())
          .sentRequestAtMillis(sentRequestMillis)
          .receivedResponseAtMillis(System.currentTimeMillis())
          .build();
    
      int code = response.code();
      if (code == 100) {
        // server sent a 100-continue even though we did not request one.
        // try again to read the actual response
        response = exchange.readResponseHeaders(false)
            .request(request)
            .handshake(exchange.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    
        code = response.code();
      }
    
      exchange.responseHeadersEnd(response);
    
      if (forWebSocket && code == 101) {
        // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
        response = response.newBuilder()
            .body(Util.EMPTY_RESPONSE)
            .build();
      } else {
        response = response.newBuilder()
            .body(exchange.openResponseBody(response))
            .build();
      }
    
      if ("close".equalsIgnoreCase(response.request().header("Connection"))
          || "close".equalsIgnoreCase(response.header("Connection"))) {
        exchange.noNewExchangesOnConnection();
      }
    
      if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
        throw new ProtocolException(
            "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
      }
    
      return response;
    }
    

    exchange.writeRequestHeaders(request)方法:

    public void writeRequestHeaders(Request request) throws IOException {
      try {
        eventListener.requestHeadersStart(call);
        codec.writeRequestHeaders(request);
        eventListener.requestHeadersEnd(call, request);
      } catch (IOException e) {
        eventListener.requestFailed(call, e);
        trackFailure(e);
        throw e;
      }
    }
    

    因为没有设置过eventListener,所以是默认的eventListenerFactory = EventListener.factory(EventListener.NONE),所以eventListener.requestHeadersStart(call)和eventListener.requestHeadersEnd(call, request)是空实现。newExchange方法中可知codec是由exchangeFinder.find(client, chain, doExtensiveHealthChecks)得到,exchangeFinder是在Transmitter的prepareToConnect中创建,找到exchangeFinder的find方法:

    public ExchangeCodec find(
        OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
      int connectTimeout = chain.connectTimeoutMillis();
      int readTimeout = chain.readTimeoutMillis();
      int writeTimeout = chain.writeTimeoutMillis();
      int pingIntervalMillis = client.pingIntervalMillis();
      boolean connectionRetryEnabled = client.retryOnConnectionFailure();
    
      try {
        RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
            writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
        return resultConnection.newCodec(client, chain);
      } catch (RouteException e) {
        trackFailure();
        throw e;
      } catch (IOException e) {
        trackFailure();
        throw new RouteException(e);
      }
    }
    
    /**
     * Finds a connection and returns it if it is healthy. If it is unhealthy the process is repeated
     * until a healthy connection is found.
     */
    private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
        int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
        boolean doExtensiveHealthChecks) throws IOException {
      while (true) {
        RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
            pingIntervalMillis, connectionRetryEnabled);
    
        // If this is a brand new connection, we can skip the extensive health checks.
        synchronized (connectionPool) {
          if (candidate.successCount == 0 && !candidate.isMultiplexed()) {
            return candidate;
          }
        }
    
        // Do a (potentially slow) check to confirm that the pooled connection is still good. If it
        // isn't, take it out of the pool and start again.
        if (!candidate.isHealthy(doExtensiveHealthChecks)) {
          candidate.noNewExchanges();
          continue;
        }
    
        return candidate;
      }
    }
    
    /**
     * Returns a connection to host a new stream. This prefers the existing connection if it exists,
     * then the pool, finally building a new connection.
     */
    private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
        int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
      boolean foundPooledConnection = false;
      RealConnection result = null;
      Route selectedRoute = null;
      RealConnection releasedConnection;
      Socket toClose;
      synchronized (connectionPool) {
        if (transmitter.isCanceled()) throw new IOException("Canceled");
        hasStreamFailure = false; // This is a fresh attempt.
    
        // Attempt to use an already-allocated connection. We need to be careful here because our
        // already-allocated connection may have been restricted from creating new exchanges.
        releasedConnection = transmitter.connection;
        toClose = transmitter.connection != null && transmitter.connection.noNewExchanges
            ? transmitter.releaseConnectionNoEvents()
            : null;
    
        if (transmitter.connection != null) {
          // We had an already-allocated connection and it's good.
          result = transmitter.connection;
          releasedConnection = null;
        }
    
        if (result == null) {
          // Attempt to get a connection from the pool.
          if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, null, false)) {
            foundPooledConnection = true;
            result = transmitter.connection;
          } else if (nextRouteToTry != null) {
            selectedRoute = nextRouteToTry;
            nextRouteToTry = null;
          } else if (retryCurrentRoute()) {
            selectedRoute = transmitter.connection.route();
          }
        }
      }
      closeQuietly(toClose);
    
      if (releasedConnection != null) {
        eventListener.connectionReleased(call, releasedConnection);
      }
      if (foundPooledConnection) {
        eventListener.connectionAcquired(call, result);
      }
      if (result != null) {
        // If we found an already-allocated or pooled connection, we're done.
        return result;
      }
    
      // If we need a route selection, make one. This is a blocking operation.
      boolean newRouteSelection = false;
      if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
        newRouteSelection = true;
        routeSelection = routeSelector.next();
      }
    
      List routes = null;
      synchronized (connectionPool) {
        if (transmitter.isCanceled()) throw new IOException("Canceled");
    
        if (newRouteSelection) {
          // Now that we have a set of IP addresses, make another attempt at getting a connection from
          // the pool. This could match due to connection coalescing.
          routes = routeSelection.getAll();
          if (connectionPool.transmitterAcquirePooledConnection(
              address, transmitter, routes, false)) {
            foundPooledConnection = true;
            result = transmitter.connection;
          }
        }
    
        if (!foundPooledConnection) {
          if (selectedRoute == null) {
            selectedRoute = routeSelection.next();
          }
    
          // Create a connection and assign it to this allocation immediately. This makes it possible
          // for an asynchronous cancel() to interrupt the handshake we're about to do.
          result = new RealConnection(connectionPool, selectedRoute);
          connectingConnection = result;
        }
      }
    
      // If we found a pooled connection on the 2nd time around, we're done.
      if (foundPooledConnection) {
        eventListener.connectionAcquired(call, result);
        return result;
      }
    
      // Do TCP + TLS handshakes. This is a blocking operation.
      result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
          connectionRetryEnabled, call, eventListener);
      connectionPool.routeDatabase.connected(result.route());
    
      Socket socket = null;
      synchronized (connectionPool) {
        connectingConnection = null;
        // Last attempt at connection coalescing, which only occurs if we attempted multiple
        // concurrent connections to the same host.
        if (connectionPool.transmitterAcquirePooledConnection(address, transmitter, routes, true)) {
          // We lost the race! Close the connection we created and return the pooled connection.
          result.noNewExchanges = true;
          socket = result.socket();
          result = transmitter.connection;
    
          // It's possible for us to obtain a coalesced connection that is immediately unhealthy. In
          // that case we will retry the route we just successfully connected with.
          nextRouteToTry = selectedRoute;
        } else {
          connectionPool.put(result);
          transmitter.acquireConnectionNoEvents(result);
        }
      }
      closeQuietly(socket);
    
      eventListener.connectionAcquired(call, result);
      return result;
    }
    

    关键代码:

    // Do TCP + TLS handshakes. This is a blocking operation.
    result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,connectionRetryEnabled, call, eventListener);
    

    注释说明这是TCP阻塞操作,很明显这里是网络请求的地方:

    public void connect(int connectTimeout, int readTimeout, int writeTimeout,
        int pingIntervalMillis, boolean connectionRetryEnabled, Call call,
        EventListener eventListener) {
      if (protocol != null) throw new IllegalStateException("already connected");
    
      RouteException routeException = null;
      List connectionSpecs = route.address().connectionSpecs();
      ConnectionSpecSelector connectionSpecSelector = new ConnectionSpecSelector(connectionSpecs);
    
      if (route.address().sslSocketFactory() == null) {
        if (!connectionSpecs.contains(ConnectionSpec.CLEARTEXT)) {
          throw new RouteException(new UnknownServiceException(
              "CLEARTEXT communication not enabled for client"));
        }
        String host = route.address().url().host();
        if (!Platform.get().isCleartextTrafficPermitted(host)) {
          throw new RouteException(new UnknownServiceException(
              "CLEARTEXT communication to " + host + " not permitted by network security policy"));
        }
      } else {
        if (route.address().protocols().contains(Protocol.H2_PRIOR_KNOWLEDGE)) {
          throw new RouteException(new UnknownServiceException(
              "H2_PRIOR_KNOWLEDGE cannot be used with HTTPS"));
        }
      }
    
      while (true) {
        try {
          if (route.requiresTunnel()) {
            connectTunnel(connectTimeout, readTimeout, writeTimeout, call, eventListener);
            if (rawSocket == null) {
              // We were unable to connect the tunnel but properly closed down our resources.
              break;
            }
          } else {
            connectSocket(connectTimeout, readTimeout, call, eventListener);
          }
          establishProtocol(connectionSpecSelector, pingIntervalMillis, call, eventListener);
          eventListener.connectEnd(call, route.socketAddress(), route.proxy(), protocol);
          break;
        } catch (IOException e) {
          closeQuietly(socket);
          closeQuietly(rawSocket);
          socket = null;
          rawSocket = null;
          source = null;
          sink = null;
          handshake = null;
          protocol = null;
          http2Connection = null;
    
          eventListener.connectFailed(call, route.socketAddress(), route.proxy(), null, e);
    
          if (routeException == null) {
            routeException = new RouteException(e);
          } else {
            routeException.addConnectException(e);
          }
    
          if (!connectionRetryEnabled || !connectionSpecSelector.connectionFailed(e)) {
            throw routeException;
          }
        }
      }
    
      if (route.requiresTunnel() && rawSocket == null) {
        ProtocolException exception = new ProtocolException("Too many tunnel connections attempted: "
            + MAX_TUNNEL_ATTEMPTS);
        throw new RouteException(exception);
      }
    
      if (http2Connection != null) {
        synchronized (connectionPool) {
          allocationLimit = http2Connection.maxConcurrentStreams();
        }
      }
    }
    

    createTunnel里面也是先进行connectSocket:

    /**
     * To make an HTTPS connection over an HTTP proxy, send an unencrypted CONNECT request to create
     * the proxy connection. This may need to be retried if the proxy requires authorization.
     */
    private Request createTunnel(int readTimeout, int writeTimeout, Request tunnelRequest,
        HttpUrl url) throws IOException {
      // Make an SSL Tunnel on the first message pair of each SSL + proxy connection.
      String requestLine = "CONNECT " + Util.hostHeader(url, true) + " HTTP/1.1";
      while (true) {
        Http1ExchangeCodec tunnelCodec = new Http1ExchangeCodec(null, null, source, sink);
        source.timeout().timeout(readTimeout, MILLISECONDS);
        sink.timeout().timeout(writeTimeout, MILLISECONDS);
        tunnelCodec.writeRequest(tunnelRequest.headers(), requestLine);
        tunnelCodec.finishRequest();
        Response response = tunnelCodec.readResponseHeaders(false)
            .request(tunnelRequest)
            .build();
        tunnelCodec.skipConnectBody(response);
    
        switch (response.code()) {
          case HTTP_OK:
            // Assume the server won't send a TLS ServerHello until we send a TLS ClientHello. If
            // that happens, then we will have buffered bytes that are needed by the SSLSocket!
            // This check is imperfect: it doesn't tell us whether a handshake will succeed, just
            // that it will almost certainly fail because the proxy has sent unexpected data.
            if (!source.getBuffer().exhausted() || !sink.buffer().exhausted()) {
              throw new IOException("TLS tunnel buffered too many bytes!");
            }
            return null;
    
          case HTTP_PROXY_AUTH:
            tunnelRequest = route.address().proxyAuthenticator().authenticate(route, response);
            if (tunnelRequest == null) throw new IOException("Failed to authenticate with proxy");
    
            if ("close".equalsIgnoreCase(response.header("Connection"))) {
              return tunnelRequest;
            }
            break;
    
          default:
            throw new IOException(
                "Unexpected response code for CONNECT: " + response.code());
        }
      }
    }
    

    所以看一下connectSocket:

    /** Does all the work necessary to build a full HTTP or HTTPS connection on a raw socket. */
    private void connectSocket(int connectTimeout, int readTimeout, Call call,
        EventListener eventListener) throws IOException {
      Proxy proxy = route.proxy();
      Address address = route.address();
    
      rawSocket = proxy.type() == Proxy.Type.DIRECT || proxy.type() == Proxy.Type.HTTP
          ? address.socketFactory().createSocket()
          : new Socket(proxy);
    
      eventListener.connectStart(call, route.socketAddress(), proxy);
      rawSocket.setSoTimeout(readTimeout);
      try {
        Platform.get().connectSocket(rawSocket, route.socketAddress(), connectTimeout);
      } catch (ConnectException e) {
        ConnectException ce = new ConnectException("Failed to connect to " + route.socketAddress());
        ce.initCause(e);
        throw ce;
      }
    
      // The following try/catch block is a pseudo hacky way to get around a crash on Android 7.0
      // More details:
      // https://github.com/square/okhttp/issues/3245
      // https://android-review.googlesource.com/#/c/271775/
      try {
        source = Okio.buffer(Okio.source(rawSocket));
        sink = Okio.buffer(Okio.sink(rawSocket));
      } catch (NullPointerException npe) {
        if (NPE_THROW_WITH_NULL.equals(npe.getMessage())) {
          throw new IOException(npe);
        }
      }
    }
    

    Platform.get().connectSocket往下追溯,最终也会调用到SocketsSocketImpl的privilegedConnect中:

    private synchronized void privilegedConnect(final String host,
                                              final int port,
                                              final int timeout)
         throws IOException
    {
        try {
            AccessController.doPrivileged(
                new java.security.PrivilegedExceptionAction() {
                    public Void run() throws IOException {
                              superConnectServer(host, port, timeout);
                              cmdIn = getInputStream();
                              cmdOut = getOutputStream();
                              return null;
                          }
                      });
        } catch (java.security.PrivilegedActionException pae) {
            throw (IOException) pae.getException();
        }
    }
    

    这又到了socket通信的地方了,此时rawSocket持有了通信连接的inputStream和outputStream,下面的Okio.buffer又把输入输出流封装了一层,以输入流的read为例:

    /**
     * Returns a source that reads from {@code socket}. Prefer this over {@link
     * #source(InputStream)} because this method honors timeouts. When the socket
     * read times out, the socket is asynchronously closed by a watchdog thread.
     */
    public static Source source(Socket socket) throws IOException {
      if (socket == null) throw new IllegalArgumentException("socket == null");
      if (socket.getInputStream() == null) throw new IOException("socket's input stream == null");
      AsyncTimeout timeout = timeout(socket);
      Source source = source(socket.getInputStream(), timeout);
      return timeout.source(source);
    }
    

    Okio的source方法,它持有InputStream:

    private static Source source(final InputStream in, final Timeout timeout) {
      if (in == null) throw new IllegalArgumentException("in == null");
      if (timeout == null) throw new IllegalArgumentException("timeout == null");
    
      return new Source() {
        @Override public long read(Buffer sink, long byteCount) throws IOException {
          if (byteCount < 0) throw new IllegalArgumentException("byteCount < 0: " + byteCount);
          if (byteCount == 0) return 0;
          try {
            timeout.throwIfReached();
            Segment tail = sink.writableSegment(1);
            int maxToCopy = (int) Math.min(byteCount, Segment.SIZE - tail.limit);
            int bytesRead = in.read(tail.data, tail.limit, maxToCopy);
            if (bytesRead == -1) return -1;
            tail.limit += bytesRead;
            sink.size += bytesRead;
            return bytesRead;
          } catch (AssertionError e) {
            if (isAndroidGetsocknameError(e)) throw new IOException(e);
            throw e;
          }
        }
    
        @Override public void close() throws IOException {
          in.close();
        }
    
        @Override public Timeout timeout() {
          return timeout;
        }
    
        @Override public String toString() {
          return "source(" + in + ")";
        }
      };
    }
    

    timeout.source方法,它持有的source就是上面的Source:

    /**
     * Returns a new source that delegates to {@code source}, using this to implement timeouts. This
     * works best if {@link #timedOut} is overridden to interrupt {@code sink}'s current operation.
     */
    public final Source source(final Source source) {
      return new Source() {
        @Override public long read(Buffer sink, long byteCount) throws IOException {
          boolean throwOnTimeout = false;
          enter();
          try {
            long result = source.read(sink, byteCount);
            throwOnTimeout = true;
            return result;
          } catch (IOException e) {
            throw exit(e);
          } finally {
            exit(throwOnTimeout);
          }
        }
    
        @Override public void close() throws IOException {
          boolean throwOnTimeout = false;
          enter();
          try {
            source.close();
            throwOnTimeout = true;
          } catch (IOException e) {
            throw exit(e);
          } finally {
            exit(throwOnTimeout);
          }
        }
    
        @Override public Timeout timeout() {
          return AsyncTimeout.this;
        }
    
        @Override public String toString() {
          return "AsyncTimeout.source(" + source + ")";
        }
      };
    }
    

    所以最终RealConnection中的source和sink此时被赋值了。所以最后find返回的ExchangeCodec就是通过RealConnection中的newCodec得到的,并且在这个过程中取得了网络连接:

    ExchangeCodec newCodec(OkHttpClient client, Interceptor.Chain chain) throws SocketException {
      if (http2Connection != null) {
        return new Http2ExchangeCodec(client, this, chain, http2Connection);
      } else {
        socket.setSoTimeout(chain.readTimeoutMillis());
        source.timeout().timeout(chain.readTimeoutMillis(), MILLISECONDS);
        sink.timeout().timeout(chain.writeTimeoutMillis(), MILLISECONDS);
        return new Http1ExchangeCodec(client, this, source, sink);
      }
    }
    

    可以看到newCodec就是Http1ExchangeCodec,所以codec的writeRequestHeaders为:

    @Override public void writeRequestHeaders(Request request) throws IOException {
      String requestLine = RequestLine.get(
          request, realConnection.route().proxy().type());
      writeRequest(request.headers(), requestLine);
    }
    
    /** Returns bytes of a request header for sending on an HTTP transport. */
    public void writeRequest(Headers headers, String requestLine) throws IOException {
      if (state != STATE_IDLE) throw new IllegalStateException("state: " + state);
      sink.writeUtf8(requestLine).writeUtf8("\r\n");
      for (int i = 0, size = headers.size(); i < size; i++) {
        sink.writeUtf8(headers.name(i))
            .writeUtf8(": ")
            .writeUtf8(headers.value(i))
            .writeUtf8("\r\n");
      }
      sink.writeUtf8("\r\n");
      state = STATE_OPEN_REQUEST_BODY;
    }
    

    在这里把headers信息写入Buffer。

    回到CallServerInterceptor的intercept继续往下走,如果不是GET和HEAD请求方法并且request的body不为空,则调用flushRequest方法,这个方法实际上走到底就是调用了Okio的source方法,最终调用了socket的InputStream的flush方法,即通过网络发送数据。

    关于100-Continue的头信息,是预先请求服务器是否接受POST数据。

    最后是读取response,最终返回一个RealResponseBody对象,最后通过Objects.requireNonNull(response.body()).string()读取返回的body数据。

  • 总结

    从源码层面分析了OkHttp是怎样一步步把Socket请求封装成API调用的,类似于HttpClient,不同的是,对于大部分的通用处理都以模板模式写好了,比如Interceptor设置,还有大部分的基础参数都通过默认的Builder构造了默认值。

你可能感兴趣的:(OkHttp源码分析)