Java数据结构和算法-斐波那契查找算法原理

斐波那契(黄金分割法)查找算法

斐波那契(黄金分割法)查找基本介绍:
1.黄金分割点是指把一条线段分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果。
2.斐波那契数列{1,1,2,3,5,8,13,21,34,55}发现斐波那契数列的两个相邻数的比例,无限接近黄金分割值0.618。

斐波那契(黄金分割法)原理:
斐波那契查找原理与前两种相似,仅仅改变了中间节点(mid)的位置,mid不再是中间或插值得到,而是位于黄金分割点附近,即mid=low+F(k-1)-1(F代表斐波那契数列),如下图所示

Java数据结构和算法-斐波那契查找算法原理_第1张图片
斐波那契数列.jpg

对F(k-1)-1的理解:
1.由斐波那契数列F[k]=F[k-1]+F[k-2]的性质,可以得到(F[k]-1)=(F[k-1]-1)+(F[k-2]-1)+1。该式说明:只要顺序表的长度为F[k]-1,则可以将该表分成长度为F[k-1]-1和F[k-2]-1的两段,即如上图所示。从而中间位置为mid=low+F(k-1)-1
2.类似的,每一字段也可以用相同的方式分割
3.但顺序表长度n不一定刚好等于F[k]-1,所以需要将原来的顺序表长度n增加至F[k]-1。这里的k值只要能使得F[k]-1恰好大于或等于n即可,由一下代码得到,顺序表长度增加后,新增的位置(从n+1到F[k]-1位置),都赋为n位置的值即可。

while(n>fib(k)-1){
  k++;
}

你可能感兴趣的:(Java数据结构和算法-斐波那契查找算法原理)