摩尔定律和大数据之间有什么联系?

在测量和测试计算机应用程序时,科学家和工程师每天都会收集大量的数据。例如,世界上最大的被称为大型强子对撞机的粒子持有者对撞机每秒产生大约40太字节的数据。波音公司的喷气发动机每三十分钟就会产生大约十兆兆字节的数据。当一架Jumbo喷气式飞机跨大西洋航行时,喷气式飞机上的四台发动机可产生大约640太字节的数据。如果将这种数据乘以每天平均2500次的航班,每天产生的数据量是惊人的;这就是所谓的大数据。


摩尔定律和大数据之间有什么联系?_第1张图片
欢迎关注大数据周刊


从大量的数据中得出结论并获得可操作的数据是一项艰巨的任务,大数据包含了这个问题。大数据带来了新的数据处理方式。比如:深度的数据分析工具,数据集成工具,搜索工具,报告工具和维护工具,帮助处理大数据以从中获取价值。

国际数据公司(IDC)对音乐,视频文件和其他数据文件进行了分析。研究表明,系统产生的数据量每年翻一番。这是摩尔定律的一般概念。

摩尔定律如何改变?

当谈到微处理器的力量时,可能会经历摩尔定律的最后一个宽度。如果处理能力增加了,其他计算领域将不得不被检查。从云计算的能力来看,云计算提供了可共享的资源,处理能力将提高创新能力,提高业务效率。

为了提高微处理器的处理能力,有一项新的技术正在研究和测试中。英特尔正在德克萨斯州测试光子学。 Photonics使用光线传输数据的速度更快,而且不会造成信号损失。这降低了电力的产生并使数据以光速传播。这个实验将有助于摩尔定律增加其过程流量和能力,重新开始一个新的循环。

摩尔定律之后,人工智能又如何呢?

人工智能已经成为下一个主流的技术范例,这使得人工智能需要新的力量,因为摩尔定律和Dennard标度不够强。摩尔定律指出,芯片特定区域的晶体管数量将在两年后翻倍。在Dennard缩放中,保持晶体管所需的功率量正在缩小。

过去几年来,英特尔已经减少了生产具有更密集和更小晶体管的新芯片的步伐。几年前,小型晶体管效率的提高也停滞不前,这导致了功耗的问题。

AI如何处理更多的数据负载需要更强大的芯片。

科学家和大数据

大数据来源非常多。例如,在现实世界中收集的数据令人震惊地多样化,并且负载巨大。 RF信号,振动,压力,磁性,声音,温度,光线,电压等的测量都以不同形式和高速度记录。

摩尔定律在哪里?

一个晶体管的物理长度和其他关键逻辑的重要维度将逐渐缩小到2028年,但3D概念已经占据了中心位置。与内存有关的行业已经接受了三维架构提升NAND闪存容量,缓解小型化的压力。这并不意味着摩尔定律的结束。

结论

摩尔定律在处理大数据方面依然有效,但在使用3D架构方面更具经济意义。人工智能将在未来几年带来日益增长的处理能力需求,而芯片制造公司必须生产真正快速的处理器来处

理工作量。

你可能感兴趣的:(摩尔定律和大数据之间有什么联系?)