- Java 企业级 Jakarta EE 11 发布
ejinxian
Javajava开发语言JakartaEE11javaEE11
标志着企业级Java在简化开发、提升开发人员生产力和整体性能方面的进步。主要亮点包括:现代化的测试兼容性工具包(TCK)、全新JakartaData规范的引入、对现有规范的重大更新以及对最新JavaLTS版本的支持,使开发人员能够充分利用Java21中的增强功能,包括虚拟线程JakartaData在简化企业应用程序持久化逻辑方面迈出了重要一步。主要功能包括:BasicRepository:基础存储
- ETF期权交易时反向做反了,有没有什么补救策略?
张文6.7
区块链
补救策略一:立即对冲风险若发现ETF期权交易方向做反,可迅速建立对冲仓位抵消风险。例如,买入认购期权误操作为卖出认购期权,可立即买入同等数量的认购期权对冲。对冲后,原有错误仓位与新对冲仓位形成中性组合,避免进一步损失。对冲需考虑合约的到期日、行权价是否匹配,否则可能无法完全抵消风险。对冲后仍需密切监控市场变化,必要时调整仓位。补救策略二:平仓止损并重建正确仓位直接平掉错误仓位,重新建立符合原计划的
- 【赵渝强老师】OceanBase数据库从零开始:Oracle模式
这里我们来介绍一下新上线的课程《OceanBase数据库从零开始:Oracle模式》,本门课程共11章,视频讲解如下:https://www.bilibili.com/video/BV1r4NCzHEka/?aid=114720556191...下面详细介绍一下每一章的主要内容:第01章-OceanBase的体系架构本章主要介绍OceanBase分布式数据库集群的体系架构,包括:OBServer节
- C#.NET in、out、ref详解
c#.net
简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用前必须赋值典型场景ref引用传递可读可写需先在调用前初始化是修改调用者变量;传大对象避免拷贝in只读引用传递只读(不能赋值)需先在调用前初始化是传递大值类型以避免拷贝out引用传递必须在方法体内赋值调用前可未初
- AIGC领域Prompt工程:原理、方法与行业应用
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCpromptai
AIGC领域Prompt工程:原理、方法与行业应用关键词:Prompt工程、大语言模型(LLM)、提示设计、少样本学习、AIGC应用、思维链(CoT)、提示优化摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,大语言模型(如GPT-4、LLaMA、通义千问)的性能已达到前所未有的高度。然而,模型的强大能力能否被充分释放,很大程度上依赖于"提示(Prompt)"的设计质量。本文系统解析Prom
- Python collections.abc模块介绍
qq_27390023
python开发语言
collections.abc是Python标准库中的一个模块,提供了一系列抽象基类(AbstractBaseClasses,ABCs),用于定义和检查容器类型(如序列、映射、集合等)的接口。这些抽象基类为常见的数据结构提供了统一的接口和行为规范,使得开发者可以更方便地实现和使用这些数据结构。1.collections.abc的作用collections.abc模块的主要作用是提供一组抽象基类,用
- 从指令设计到系统集成:提示词工具链与GPTs插件的效率革命
charles666666
人工智能自然语言处理语言模型知识图谱transformer
一、提示词工程工具链:概念与架构解析1.1为什么需要工具链?大模型交互的本质是“指令设计”,但人工编写提示词存在三大痛点:效率低(重复调试耗时)、质量不稳定(依赖个人经验)、复用性差(场景迁移成本高)。例如,某电商企业要求AI生成500种商品描述时,人工逐条调整提示词需耗费数周,且风格难以统一。工具链的价值在于通过模块化设计与自动化流程解决上述问题。其核心架构包含三个层级:需求解析层:将用户需求拆
- React - 错误边界(Error boundary)
风轻轻~
#React__基础react.js
React-错误边界(Errorboundary)一.理解二.使用1.使用方式2.使用案例错误边界:https://zh-hans.reactjs.org/docs/error-boundaries.html一.理解部分UI的JavaScript错误不应该导致整个应用崩溃,为了解决这个问题,React16引入了一个新的概念——错误边界。错误边界是一种React组件,这种组件可以捕获发生在其子组件树
- 大语言模型中的思维链提示:解锁高效互动的秘密
t0_54program
大数据与人工智能语言模型人工智能自然语言处理个人开发
在当今的人工智能领域,大语言模型(LLMs)已然成为一颗耀眼的明星,它经过海量训练,能够理解并生成人类语言,在编程等诸多领域助力人们完成日常任务。然而,若想与这些模型实现高效沟通,掌握正确的请求方式至关重要,而思维链提示(Chainofthoughtprompting)便是与LLMs互动时最为高效的技术之一。什么是提示(Prompting)?LLMs基于海量数据集进行训练,以理解并生成类人文本。其
- 番外篇 | SEAM-YOLO:引入SEAM系列注意力机制,提升遮挡小目标的检测性能
小哥谈
YOLOv8:从入门到实战YOLO深度学习人工智能机器学习计算机视觉神经网络
前言:Hello大家好,我是小哥谈。SEAM(Squeeze-and-ExcitationAttentionModule)系列注意力机制是一种高效的特征增强方法,特别适合处理遮挡和小目标检测问题。该机制通过建模通道间关系来自适应地重新校准通道特征响应。在遮挡小目标检测中的应用优势包括:1)通道注意力增强:SEAM通过全局平均池化捕获通道级全局信息,帮助网络在遮挡情况下仍能关注关键特征。2)多尺度特
- 随机存储器有哪些,只读存储器又有哪些
我推是大富翁
计算机组成原理计算机组成原理
一、随机存储器(RAM,易失性,断电数据丢失)1.静态RAM(SRAM)特点:用触发器存储数据,无需刷新,速度极快(纳秒级),但容量小、成本高。用途:CPU缓存(如L1/L2/L3Cache)。2.动态RAM(DRAM)特点:用电容存储,需定期刷新,速度较慢(微秒级),容量大、成本低。变种:SDRAM:同步DRAM(如DDR3/DDR4/DDR5,电脑内存条)。VRAM:显卡专用显存,支持高速图像
- SELinux 从理论到实践:深入解析与实战指南
智驾
LinuxSELinuxTEELinux安全启动
文章目录引言:为什么需要SELinux?第一部分:SELinux核心理论1.1SELinux的三大核心模型1.2安全上下文(SecurityContext)1.3策略语言与模块化第二部分:实战操作指南2.1SELinux状态管理2.2文件上下文管理2.3服务配置与排错第三部分:高级技巧与最佳实践3.1自定义策略模块开发3.2常见问题与解决方案总结:SELinux的价值与学习路径参考引言:为什么需要
- 3天狂揽2.8k星!manus 开源替代又又又又又又又来啦! 逆天AI助理Suna开源!免费替你搞定一切,效率飙升!
梦玄海
人工智能开源编辑器stablediffusiongolang
今天给大家挖来一个超级宝藏!你是不是也曾幻想过拥有一个钢铁侠的贾维斯那样,能帮你处理各种繁琐任务的AI伙伴?能在你忙得焦头烂额时,优雅地帮你完成研究、分析数据、甚至处理各种日常挑战?别再幻想了!今天的主角——Suna,就是这样一个为你而生的开源通用AI智能体!它不仅仅是一个聊天机器人,更是一个能代表你行动、解决现实世界问题的得力干(工)助(具)手(人)!在GitHub上,光发布几天的Suna项目已
- 【数据标注师】目标跟踪标注
试着
数据标注师目标跟踪人工智能计算机视觉数据标注师目标跟踪标注
目录一、**目标跟踪标注的四大核心挑战**二、**五阶能力培养体系**▶**阶段1:基础规则内化(1-2周)**▶**阶段2:复杂场景处理技能**▶**阶段3:专业工具mastery**▶**阶段4:领域深度专精▶**阶段5:效率突破方案三、**精度控制五大核心技术**四、**质检与错误防御体系**1.**四维质检法**:2.**高频错误防御表**:五、**持续进阶体系**1.**复杂场景专项**
- 人工智能大模型原理与应用实战:大模型在金融风控中的应用
AI天才研究院
LLM大模型落地实战指南大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA
文章目录人工智能大模型原理与应用实战:大模型在金融风控中的应用01.背景介绍1.1金融风控的挑战1.2大模型的优势2.核心概念与联系2.1大模型在金融风控中的应用场景2.2大模型与传统风控技术的结合3.核心算法原理具体操作步骤3.1基于大模型的欺诈检测3.2基于大模型的信用评估4.数学模型和公式详细讲解举例说明4.1逻辑回归模型4.2XGBoost模型5.项目实践:代码实例和详细解释说明5.1基于
- 大数据智能风控核心:模型
johnny233
读书笔记大数据
概述模型线性判别分析方法,SirRonaldFisher最早提出模型评分的概念。个人FICO模型信用分。巴塞尔委员会发布巴塞尔Ⅱ协议,推出内部评级法(InternalRatingBasedApproach,IRB)。IRB综合考虑客户评级和债项评级,通过违约概率(ProbabilityofDefault,PD)、违约损失率(LossGivenDefault,LGD)、违约风险暴露(Exposure
- AlphaStar 星际首秀,人工智能走向星辰大海
谷歌开发者
文/王晶,资深工程师,GoogleBrain团队作者王晶,现为GoogleBrain团队的资深工程师,主要致力深度强化学习的研发,和DeepMind团队在强化学习的应用上有许多合作。北京时间1月25日凌晨2点,DeepMind直播了他们的AIAlphaStar和人类顶尖的职业电竞选手对战星际争霸2。根据DeepMind介绍,AlphaStar在2018年12月10日和19日先后以5:0全胜的战绩击
- 随机森林详解:原理、优势与应用实践
大千AI助手
人工智能Python#OTHER随机森林算法机器学习决策树人工智能DecisionTree数据挖掘
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!随机森林介绍1.定义:随机森林是一种强大的、高度灵活的集成学习(EnsembleLearning)算法,主要用于分类和回归任务。它的核心思想是构建多棵决策树(DecisionTree),并将这些树的预测结果进行组合(例如,分类任务采用投票,回归任务采用
- 集成学习基础:Bagging 原理与应用
大千AI助手
人工智能Python#OTHER集成学习机器学习人工智能算法决策树Bagging
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!Bagging介绍1.定义与全称:Bagging是BootstrapAggregating的缩写,中文常译为装袋法。它是一种并行式的集成学习方法。核心目标是通过构建多个基学习器的预测结果进行组合(通常是投票或平均),来获得比单一基学习器更稳定、更准确、
- 经济学神图:洛伦兹曲线
大千AI助手
人工智能Python#OTHER决策树人工智能DecisionTree算法洛伦兹曲线基尼
洛伦兹曲线(LorenzCurve)是衡量社会收入或财富分配不平等程度的经典可视化工具,由美国统计学家马克斯·洛伦兹(MaxOttoLorenz)于1905年提出。它不仅是理解基尼系数的核心基础,也是经济学、社会学中分析资源分配公平性的关键图表。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文
- **双生“基尼”**:跨越世纪的术语撞车与学科分野
在学术的宇宙中,“基尼”(Gini)这个名字如同一个奇特的星标,闪耀在两个看似毫不相关的领域:衡量社会贫富差距的经济学与驱动人工智能的机器学习。然而,当人们在这两个领域都遇到“基尼指数”或“基尼系数”时,困惑油然而生——它们为何如此不同?又为何共享同一个名字?这不是某个“傻逼”的随意命名,而是一场跨越学科与世纪的“术语交通事故”,其背后是学术传承与概念抽象的交织。本文由「大千AI助手」原创发布,专
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- 算法练习-02
亮亮爱刷题
算法数据结构c++
今天给大家带来的是第二天的几道练习题,包括几道思路特别巧妙的算法题,以及提升的背包问题,相信这类问题对大家算法能力的提升还是十分有帮助的,希望大家学完可以给博主点一个关注。第一题:问题描述给定一个长度为n的数组a,小蓝希望从数组中选择若干个元素(可以不连续),并将它们重新排列,使得这些元素能够形成一个先严格递增然后严格递减的子序列(可以没有递增部分或递减部分)。你需要求出在满足这个条件下,最多可以
- 【目标检测】YOLOv13:超图增强的实时目标检测新标杆,值得收藏。
Carl_奕然
机器视觉与目标检测目标检测YOLO人工智能
一文掌握YOLOv13最新特性1、引言2、Yolov13详细讲解2.1发布时间与背景2.2相对于YOLOv12的核心提升2.2.1精度显著提升2.2.2轻量化与效率优化2.2.3高阶语义建模能力2.3架构设计与核心创新2.3.1超图自适应关联增强(HyperACE)2.3.2全流程聚合-分发(FullPAD)2.3.3轻量化模块设计2.4性能对比2.4代码示例2.4.1环境配置2.4.2训练代码2
- Nginx快速上手
浪裡遊
nginx运维前端后端
什么是nginxNginx是一款开源的高性能HTTP和反向代理服务器,同时也提供了IMAP/POP3/SMTP代理功能。它由俄罗斯程序员IgorSysoev于2004年首次发布,最初设计目的是为了解决C10k问题,即如何让单台服务器同时处理1万个并发连接的问题。功能和作用Nginx主要的功能和作用包括但不限于以下几点:Web服务器:Nginx可以作为一个轻量级的Web服务器来处理静态文件、索引文件
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option