本章背景
本章是来源于coursera课程 python-machine-learning中的作业2内容。
本章内容
- 多项式线性回归
- 决定系数 R2 (coefficient of determination) 的计算
- ridge线性回归
- lasso线性回归
参考
- 评价回归模型
- r2_score为负数的问题探讨
0. Polynomial LinearRegression(多项式线性回归)
随机创建如下数据:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
np.random.seed(0)
n = 15
x = np.linspace(0,10,n) + np.random.randn(n)/5
y = np.sin(x)+x/6 + np.random.randn(n)/10
X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
创建特定维度的多项式线性回归:
使用degree = 1,3,6 and 9 来训练X_train,并随机生成一些预测数据验证拟合结果:
def test_1():
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
xx_pred = np.linspace(0, 10, 100)
degrees = [1, 3, 6, 9]
results = []
for index in range(0, 4):
degree = degrees[index]
regression = LinearRegression()
featurizer = PolynomialFeatures(degree=degree)
X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
regression.fit(X_train_features, y_train.reshape(-1, 1))
xx_pred_features = featurizer.transform(xx_pred.reshape(-1, 1))
yy_pred = regression.predict(xx_pred_features)
# append the results
results.append(yy_pred.reshape(1, -1))
return np.concatenate(results)
# 将几个维度的多项式拟合曲线绘制出来
def plot_results(degree_predictions):
import matplotlib.pyplot as plt
plt.figure(figsize=(10,5))
plt.plot(X_train, y_train, 'o', label='training data', markersize=10)
plt.plot(X_test, y_test, 'o', label='test data', markersize=10)
for i,degree in enumerate([1,3,6,9]):
plt.plot(np.linspace(0,10,100), degree_predictions[i], alpha=0.8, lw=2, label='degree={}'.format(degree))
plt.ylim(-1,2.5)
plt.legend(loc=4)
plt.show()
plot_results(test_1())
1. coefficient of determination (决定系数R2)
决定系数(coefficient of determination)的计算方法:
R2期待值越接近1说明拟合越好,越接近0说明拟合结果差。同时根据公式可以发现,在实际计算中R2是可能为负数的,通过简单计算,当R^2为负数时,说明:
说明拟合结果差到不如使用均值。
还是使用上面的数据,分别计算X_train 和 X_test的R^2:
def test_2():
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics.regression import r2_score
# Your code here
results = []
model_cnt = 10
result_train = []
result_test = []
for degree in range(0, model_cnt):
linearRegression = LinearRegression()
featurizer = PolynomialFeatures(degree=degree)
X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
y_train_features = y_train.reshape(-1, 1)
linearRegression.fit(X_train_features, y_train_features)
y_train_pred = linearRegression.predict(X_train_features)
print('X_train r2_score ==> : ', r2_score(y_train_features, y_train_pred))
result_train.append(r2_score(y_train_features, y_train_pred))
# calculate the values for Test set
X_test_features = featurizer.transform(X_test.reshape(-1, 1))
y_test_pred = linearRegression.predict(X_test_features)
y_test_features = y_test.reshape(-1, 1)
print('X_test r2-score ==> : ', r2_score(y_test_features, y_test_pred))
result_test.append(r2_score(y_test_features, y_test_pred))
results.append(np.array(result_train).reshape(10, ))
results.append(np.array(result_test).reshape(10, ))
print(results[0].shape, results[1].shape)
print(results)
return results# Your answer here
从代码中也可以看出来,在sklearn工具包中已经包含了r2_score的计算函数,直接传入真实值和预测值即可计算,当然可以通过如上公式自行计算。
2. Ridge线性回归
Ridge线性回归是改良后的最小二乘法, 是有偏估计的回归方法, 即给损失函数加上一个正则化项, 也叫惩罚项(L2范数),防止过拟合。
Ridge回归的特点是以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。
Ridge的公式如下
其中, m是样本量, n是特征数, λ是惩罚项参数(其取值大于0), 加惩罚项主要为了让模型参数的取值不能过大. 当λ趋于无穷大时, 对应βj趋向于0, 而βj表示的是因变量随着某一自变量改变一个单位而变化的数值(假设其他自变量均保持不变), 这时, 自变量之间的共线性对因变量的影响几乎不存在, 故其能有效解决自变量之间的多重共线性问题, 同时也能防止过拟合.
代码示例:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from matplotlib.pyplot import MultipleLocator
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import Lasso, LinearRegression, Ridge
from sklearn.metrics.regression import r2_score
np.random.seed(0)
n = 15
x = np.linspace(0, 10, n) + np.random.randn(n) / 5
y = np.sin(x) + x / 6 + np.random.randn(n) / 10
X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
# Your code here
normalLinearRegression = LinearRegression()
ridgeLinearRegression = Ridge(alpha=0.01, max_iter=10000, solver='svd')
featurizer = PolynomialFeatures(degree=12)
X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
X_test_features = featurizer.transform(X_test.reshape(-1, 1))
# train the non-regularized linearRegression model
normalLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
y_test_pred_normal = normalLinearRegression.predict(X_test_features)
# cal the R2 score for non-regularized model
r2_score_normal = r2_score(y_test.reshape(-1, 1), y_test_pred_normal)
print('non-regularized linearRegression r2-score ==> ', r2_score_normal)
# train the ridge linearRegression model
ridgeLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
y_test_pred_ridge = ridgeLinearRegression.predict(X_test_features)
# cal the R2-score for Ridge-regression
r2_score_ridge = r2_score(y_test.reshape(-1, 1), y_test_pred_ridge)
print('ridge-regularized linearRegression r2-score ==> ', r2_score_ridge)
Ridge回归并不能解决减少系数/维度数量的问题,其系数均不为0。
3. LASSO线性回归
模型参数越多复杂度越高,即使用线性回归依然有很多的参数需要训练,并且这也会造成一定程度上的过拟合。并且最终得到的模型的可解释性也不高。这个时候可以考虑引入lasso回归。
Lasso回归的特点是可以在拟合训练数据的同时进行变量选择(Variable Selection)。那么它是通过什么机制选择的呢?答案就是:正则化(Regularization)!或者可以简单的把这个东西叫做惩罚项。
LASSO的公式如下
代码示例:
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from matplotlib.pyplot import MultipleLocator
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import Lasso, LinearRegression, Ridge
from sklearn.metrics.regression import r2_score
np.random.seed(0)
n = 15
x = np.linspace(0, 10, n) + np.random.randn(n) / 5
y = np.sin(x) + x / 6 + np.random.randn(n) / 10
X_train, X_test, y_train, y_test = train_test_split(x, y, random_state=0)
# Your code here
normalLinearRegression = LinearRegression()
ridgeLinearRegression = Ridge(alpha=0.01, max_iter=10000, solver='svd')
featurizer = PolynomialFeatures(degree=12)
X_train_features = featurizer.fit_transform(X_train.reshape(-1, 1))
X_test_features = featurizer.transform(X_test.reshape(-1, 1))
# train the non-regularized linearRegression model
normalLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
y_test_pred_normal = normalLinearRegression.predict(X_test_features)
# cal the R2 score for non-regularized model
r2_score_normal = r2_score(y_test.reshape(-1, 1), y_test_pred_normal)
print('non-regularized linearRegression r2-score ==> ', r2_score_normal)
# train the lasso linearRegression model
lassoLinearRegression.fit(X_train_features, y_train.reshape(-1, 1))
y_test_pred_lasso = lassoLinearRegression.predict(X_test_features)
# cal the R2 score for lasso-regularized model
r2_score_lasso = r2_score(y_test.reshape(-1, 1), y_test_pred_lasso)
print('lasso-regularized linearRegression r2-score ==> ', r2_score_lasso)
Lasso回归可以解决减少系数/维度数量的问题,其部分系数为0。