- Alluxio在数据索引和模型分发中的核心价值与应用
Alluxio
人工智能深度学习机器学习
在当前的技术环境下,搜索、推荐、广告、大模型、自动驾驶等领域的业务依赖于海量数据的处理和复杂模型的训练。这些任务通常涉及从用户行为数据和社交网络数据中提取大量信息,进行模型训练和推理。这一过程需要强大的数据分发能力,尤其是在多个服务器同时拉取同一份数据时,更是考验基础设施的性能。在这样的背景下,AlluxioEnterpriseAI在数据索引与模型分发/部署方面展示了其独特的优势,特别是在处理海量
- 选择Alluxio来解决AI模型训练场景数据访问的五大理由
Alluxio
人工智能AI分布式大数据语言模型
在AI模型训练尤其是大模型领域,存储系统的性能和稳定性直接决定了模型训练、推理、部署任务的效率和成本。随着全球AI行业的爆发带来的数据规模的快速增长,如何高效管理和利用这些数据成为AI模型训练中的一大挑战。AI模型训练场景面临的五大难题1.数据读写性能不足在AI模型训练与推理过程中,数据的高效读写是确保计算效率的关键。然而,随着数据集的急剧增长,存储系统往往无法满足对高速数据传输的需求,导致读写性
- AI算力综述和资料整理
木鱼时刻
人工智能
目录总体介绍计算精度传输协议GPU池化资源调度CUDA技术GPU硬件参考链接总体介绍AI算力是人工智能系统的核心基础设施,涵盖了从计算精度、传输协议到硬件架构的完整技术栈。计算精度混合精度训练原生满血版DeepSeek671B是FP8精度。FP16在训练计算力占比有80-90%,FP32占比10%-20%。大模型训练中通常会用到FP16(半精度浮点数),但并不是只使用FP16,而是采用**混合精度
- 对照原则在临床试验中的应用与挑战
一、对照原则的科学逻辑1.1核心目的1.1.1区分混杂效应通过对照组设置,区分疾病自然进程、安慰剂效应、回归均值现象及非特异性效应等混杂因素,凸显干预措施的真实疗效。1.2统计本质1.2.1真实疗效计算真实疗效=(干预组终点变化-干预组基线)-(对照组终点变化-对照组基线),通过组间比较抵消共同偏倚。二、对照组的五大类型及适用场景2.1安慰剂对照2.1.1构成外观/用法相同的无活性物质。2.1.2
- 重复原则与样本量估计:临床试验的统计引擎
qq_34062333
临床试验统计学
一、重复原则的科学内涵1.1核心目的1.1.1量化随机误差通过足够样本量估计效应值的波动范围,确保结果可重现。1.1.2避免偶然性结论避免因小样本极端结果导致的偶然性结论,确保结论稳健。1.1.3提升外推性覆盖人群异质性,提升研究结果的外推性。1.2统计学本质1.2.1标准误样本量增加,标准误减小,置信区间变窄,精度提高。二、样本量估计的四大核心参数2.1显著性水平(α)2.1.1定义I类错误概率
- 使用大模型预测心力衰竭的全流程系统技术方案大纲
LCG元
大模型医疗研究-方案大纲方案大纲深度学习机器学习人工智能
目录1.引言背景与意义目标2.术前风险评估与预测数据采集与预处理风险预测模型输出应用3.术中风险实时监测与预警实时数据流处理动态风险预测4.术后恢复与并发症预测恢复轨迹建模并发症防控5.个性化治疗方案制定6.统计分析与模型验证验证方法性能指标7.健康教育与指导方案8.技术架构与实施路径1.引言背景与意义问题现状:心力衰竭(HF)全球患者超千万,中国25岁以上人群患病率1.1%;传统诊疗漏诊率高,预
- 中科亿海微SoM模组——基于FPGA+RSIC-V的计算机板卡
ehiway
fpga开发
基于FPGA+RSIC-V的计算机板卡主芯片使用中科亿海微EQ6HL45-CSG324FPGA芯片和高性能微控制器HPM6880,并集合ADCLHA6958H、6通道数字隔离器SiLM5760、SiLM5763、内存W634GU6QB等器件,板卡实现了大容量配置存储等功能的融合,为模拟信号采集、数字信号处理、逻辑控制等应用提供高性能混合信号处理通用硬件平台。图板卡硬件整体框图图板卡实物图EQ6HL
- 【AI大模型】Spring AI 基于Redis实现对话持久存储详解
小码农叔叔
AI大模型应用到项目实战高手springboot入门到精通项目实战SpringAI会话存储SpringAI会话记忆SpringAI持久化会话SpringAI会话持久化SpringAI会话SpringAI记忆
目录一、前言二、SpringAI会话记忆介绍2.1SpringAI会话记忆概述2.2常用的会话记忆实现方式2.2.1集成数据库持久存储会话实现步骤2.3适用场景三、SpringAI基于内存会话记忆存储3.1本地开发环境准备3.2工程搭建与集成3.2.1添加核心依赖3.3.2添加配置文件3.3.3添加测试接口3.2ChatMemory介绍3.2.1ChatMemory概述3.2.2InMemoryC
- 【AI智能体】Coze 搭建个人旅游规划助手实战详解
小码农叔叔
AI大模型应用到项目实战高手AI智能体实战应用高手Coze制作旅游规划助手Coze制作旅游规划机器人coze搭建旅游助手coze搭建旅游助手机器人coze制作旅游助手coze机器人coze使用详解
目录一、前言二、Coze工作流介绍2.1什么是工作流2.2Coze工作流作用2.3Coze工作流节点介绍2.3.1开始节点2.3.2大模型节点2.3.3插件节点2.3.4知识库节点2.3.5条件节点三、基于Coze搭建旅游规划助手操作过程3.1创建应用3.2创建工作流3.2.1创建工作流3.2.2配置工作流3.2.2.1配置开始节点3.2.2.2增加第一个大模型节点3.2.2.3增加第二个大模型节
- 大模型系列——Ollama WebUI 简明教程
猫猫姐
大模型大模型人工智能
大模型系列——OllamaWebUI简明教程OpenWebUI,以前称为OllamaWebUI,支持各种大型语言模型(LLM)运行器,是本地部署并与语言模型交互的多功能工具。OpenWebUI,以前称为OllamaWebUI,是一个可扩展、功能丰富且用户友好的自托管Web界面,旨在完全离线运行。它支持各种大型语言模型(LLM)运行器,使其成为部署和与语言模型交互的多功能工具。OpenWebUI提供
- 从优劣势看:主流AI代码辅助工具
scuter_yu
人工智能
在当今数字化时代,AI代码编程工具已成为提升开发效率、优化代码质量的重要助手。本文将详细介绍几款热门的AI代码编程工具,包括通义灵码、Trae、腾讯云代码助手CodeBuddy、GitHubCopilot、Codeium和Cursor,从优缺点两方面进行分析,帮助开发者更好地选择适合自己的工具。通义灵码一句话介绍:通义灵码是阿里云出品的一款基于通义大模型的智能编码辅助工具。优点:多种会话模式:支持
- 主流AI代码编程工具分享
scuter_yu
aiai编程
在当今数字化时代,AI代码编程工具已成为提升开发效率、优化代码质量的重要助手。这些工具利用人工智能技术,为开发者提供从代码生成、补全到调试、优化等一系列功能,极大地简化了编程流程,让编程变得更加高效、便捷和智能。以下将介绍几款热门的AI代码编程工具。通义灵码产品介绍:通义灵码是阿里云出品的基于通义大模型的智能编程辅助工具,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码优化、注释生成
- Deepoc大模型在半导体设计优化与自动化
Deepoch
自动化运维人工智能机器人单片机ai科技
大模型在半导体设计领域的应用已形成多维度技术渗透,其核心价值在于通过数据驱动的方式重构传统设计范式。以下从技术方向、实现路径及行业影响三个层面展开详细分析:参数化建模与动态调优基于物理的深度学习模型(如PINNs)将器件物理方程嵌入神经网络架构,实现工艺参数与电学性能的非线性映射建模。通过强化学习框架(如PPO算法)动态调整掺杂浓度、栅极长度等关键参数,在3nm节点下实现驱动电流提升18%的同时降
- Deepoc大模型在半导体技术芯片性能应用协助突破物理极限
Deepoch
人工智能网络智能化AI科技数据分析硬件工程信息与通信
半导体垂直大模型在芯片设计中的应用与技术突破半导体垂直大模型(SemiconductorVerticalLLM)是专为芯片设计、制造与优化领域训练的大规模人工智能模型,其通过融合半导体物理、工艺知识、设计规则及行业经验,正在重构芯片开发全流程。以下从设计流程革新、性能优化、可靠性提升三大维度,结合具体技术路径与行业案例,解析其应用场景与价值。Deepoc模型在半导体技术应用中取得了巨大突破,可以协
- IPv4 前缀长度与主机位关系大全表(/0 到 /32)-版本2
韩公子的Linux大集市
二网络AiOps服务器网络运维
文章目录关键说明:以下是IPv4地址空间中前缀长度与主机位关系的完整表格大全,按照前缀长度从小到大(主机位从大到小)排列:前缀长度子网掩码主机位数量地址总数可用主机数典型应用场景/00.0.0.0324,294,967,296不可用默认路由/1128.0.0.0312,147,483,648不可用理论划分/2192.0.0.0301,073,741,8241,073,741,822国家级网络/32
- Linux(进程概念)
目录冯诺依曼体系操作系统进程概念进程控制进程状态环境变量虚拟地址空间(进程隔离与内存管理的基石)程序替换冯诺依曼体系五大硬件单元运算器控制器存储器输入设备输出设备所有硬件都是围绕内存工作的操作系统核心目的:高效管理与便捷交互资源管理:优化硬件与软件的资源分配提供抽象接口:屏蔽硬件复杂性保障系统安全与稳定性提供用户交互界面定位:计算机系统的管理者与桥梁如何管理:先描述再组织库函数与系统调用的关系系统
- 分布式训练架构解析
一、分布式训练的问题根源与需求驱动在深度学习领域,模型与数据规模呈指数级增长趋势,传统单机训练模式已难以满足日益复杂的业务需求,分布式训练技术应运而生,其核心驱动力源于以下三大关键困境:1.1算力瓶颈与训练效率危机单GPU设备的计算能力存在物理上限。以NVIDIAA100为例,其单卡FP32算力约为19.5TFLOPS,面对GPT-4这样拥有1.8万亿参数的超大型模型,若采用单机单卡训练,仅完成一
- AI教学应用 作业多元化和教师批改多样化
蹦跑的蜗牛
AI人工智能ai
AI教学应用作业多元化和教师批改多样化目标是解决「作业形式多样化+教师批改压力大+教学反馈个性化不足」的问题一、需求大学生的作业和高中完全不一样,比如:作业类型多:可能是论文/实验报告(文字类)、Python代码(编程类)、电路仿真图(图片类)、小组调研视频(视频类)、甚至社会调查的问卷数据(表格类)。教师批改难:比如一篇5000字的论文,老师要检查逻辑、查重、给修改建议;一份代码作业要跑通测试、
- C++ 多态与虚函数
可乐船长2020
C/C++基础多态c++
这一篇介绍一下C++面向对象三大特征之一的多态(之前面试某大厂的实习生被问到多态,后来又了解到一些设计模式,才体会到多态的强大,在这里把对多态的一点点浅显认识总结一下)如有侵权,请联系删除,如有错误,欢迎大家指正,谢谢多态父类的一个指针,可以有多种执行状态(父类的指针调用子类的函数),即多态多态实际上只是一种思想,而虚函数是实现这个思想的语法基础虚函数虚表若对象有虚函数,对象空间最开始4Byte(
- 大模型的“Tomcat”:一文读懂AI推理引擎(Inference Engine)
人工智能
本文已收录在Github,关注我,紧跟本系列专栏文章,咱们下篇再续!魔都架构师|全网30W技术追随者大厂分布式系统/数据中台实战专家主导交易系统百万级流量调优&车联网平台架构AIGC应用开发先行者|区块链落地实践者以技术驱动创新,我们的征途是改变世界!实战干货:编程严选网1推理引擎是啥?从熟悉的“服务器”说起,想象你用Java写好了一个业务应用,如订单处理服务,打成一个JAR或WAR包。这包能直接
- 解密大模型全栈开发:从搭建环境到实战案例,一站式攻略
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能大模型全栈开发
目录大模型基础概念什么是大模型?大模型的发展历程大模型的类型大模型全栈开发环境搭建硬件需求软件环境配置云服务选择大模型应用开发流程模型选择策略提示工程(PromptEngineering)模型微调(Fine-tuning)参数高效微调(PEFT)大模型应用架构设计基本应用架构RAG(检索增强生成)系统Agent系统设计大模型应用部署与优化模型部署选项模型优化技术性能监控与调优大模型应用实战案例智能
- 微调大语言模型(生成任务),怎么评估它到底“变好”了?
茫茫人海一粒沙
语言模型人工智能自然语言处理
随着大语言模型(如GPT、LLaMA)的广泛应用,越来越多团队开始基于它们做微调,定制符合自己业务需求的模型。微调虽能让模型更贴合任务,但评估是否真的“变好”却不是简单的事。本文将系统介绍微调过程中和微调完成后,如何科学有效地评估模型效果,帮助你用对指标,做出准确判断。一、微调时的评估:关注训练过程中的模型表现1.验证集Loss(ValidationLoss)微调训练时,我们会准备一部分数据作为验
- 【AI大模型】26、算力受限下的模型工程:从LoRA到弹性智能系统的优化实践
无心水
AI大模型人工智能搜索引擎LoRA大语言模型微调模型压缩知识蒸馏量化技术
引言:算力瓶颈与模型工程的突围之路在人工智能领域,大语言模型的发展正呈现出参数规模爆炸式增长的趋势。从GPT-3的1750亿参数到PaLM的5400亿参数,模型能力的提升往往伴随着对算力资源的极度渴求。然而,对于大多数企业和研究者而言,动辄数百GB的显存需求、数十万块GPU的训练集群显然是难以企及的"算力鸿沟"。当面对"无米之炊"的困境时,模型工程技术成为突破算力瓶颈的核心路径——通过算法创新而非
- 不懂的还在争论AI,懂行的已用Python+DeepSeek变现!逆袭机会就在AI应用层
渡难繁辰
python开发人工智能拥抱AI人工智能pythonai
最近总有种错觉:AI时代轰轰烈烈,普通人却只能当看客?大模型训练动辄千万美金,算法高深莫测,似乎离我们太远。别急,AI真正的革命性力量,正从神秘实验室涌向普通人的键盘——它的名字叫“AI应用层”。而拿到这张船票的钥匙,就是你早该学起来的:Python。当质疑者还在争论“AI能否取代人类”,行动派已用DeepSeek+LangChain开发智能应用月入五位数!巨头烧钱搭台,我们轻量唱戏!科技大佬砸重
- 【向上教育】国企面试手册(OCR).pdf
㏕追忆似水年华あ
人工智能大数据算法旅游c语言
国企各省面试的形式主要是结构化面试,也有少部分单位采用无领导小组讨论的面试形式。全面了解面试形式是考生须知的重要信息之一。一、结构化面试结构化面试,也称标准化面试,是相对于传统的经验型面试而言的,是根据科学制定的评价指标,运用特定的问题、评价方法和评价标准,严格遵循特定程序,通过测评人员与被测试者进行语言交流,对被测试者进行评价的标准化过程。(一)结构化面试之三大规范1.考题规范化(1)测评要素一
- Word 中批量转换 LaTeX 公式为标准数学格式的终极方法(附宏设置教程)
小灰兔的小白兔
wordc#开发语言
在学术写作中,我们常常需要将LaTeX格式的公式插入到Word文档中。但如果你有一大段公式使用$...$或LaTeX命令,手动转换无疑非常耗时。本文将介绍一种“一键转换所有LaTeX公式为Word数学公式”的方法,只需设置一次宏,后续即可像“格式刷”一样使用!原理简介MicrosoftWord实际上内置了对LaTeX的识别能力,但需要配合“公式编辑框”使用。借助宏(Macro)功能,我们可以批量触
- 多云环境密钥硬核防护:KDPS如何实现千万级密钥生命周期管理?
安 当 加 密
安全
当GitHub2023年报告显示63%的数据泄露源自测试环境时,某证券公司因测试机密钥硬编码导致量化模型被盗的教训,揭示了多云时代的安全真相:分散的密钥管理=为黑客铺就黄金路。上海安当KDPS关键数据保护系统,以国密认证的KSP密钥中台+HSM硬件加密机为核心,构建千万级密钥的“中央管控引擎”。本文从三大维度拆解其硬核能力:一、密钥管理“铁三角”:集中化、自动化、合规化能力维度传统方案痛点KDPS
- 提示工程入门指南:如何有效地与大语言模型交互
止观止
大语言模型语言模型人工智能
本文深入拆解提示工程的核心概念、最佳实践和实用技巧。作为AI领域的热点技术,提示工程(PromptEngineering)能显著提升大语言模型(LargeLanguageModel,LLM)如DeepSeek的响应质量。文档结构概览引言:为什么需要提示工程?提示的定义与结构:上下文、指令、约束的完整解析提示工程原则:6项核心技巧有效vs无效提示对比:案例驱动的实操分析用户提示与系统提示:行为控制的
- python开发框架django/flask/fastapi对比
研创通之逍遥峰
Pythonpythondjangoflask
Python三大Web开发框架对比:DjangovsFlaskvsFastAPIPython生态系统中有三个主流的Web开发框架:Django、Flask和FastAPI。它们在设计哲学、功能特性和适用场景上各有不同。1.框架概览对比特性DjangoFlaskFastAPI类型全功能框架微框架现代异步框架学习曲线较陡峭平缓中等内置功能ORM,Admin,Auth,模板仅基础路由和模板自动文档,数据
- 【行云流水a】淘天联合爱橙开源强化学习训练框架ROLL OpenRL/openrl PPO-for-Beginners: 从零开始实现强化学习算法PPO 强化学习框架verl 港大等开源GoT-R1
行云流水AI笔记
开源算法
以下是DQN(DeepQ-Network)和PPO(ProximalPolicyOptimization)的全面对比流程图及文字解析。两者是强化学习的核心算法,但在设计理念、适用场景和实现机制上有显著差异:graphTDA[对比维度]-->B[算法类型]A-->C[策略表示]A-->D[动作空间]A-->E[学习机制]A-->F[探索方式]A-->G[稳定性]A-->H[样本效率]A-->I[关键
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》