- 探索 Qwen3-0.6B:轻量级大模型的技术突破与应用潜力
在大模型技术飞速发展的今天,轻量化、高性能的模型成为业界关注的焦点。Qwen3-0.6B作为阿里推出的轻量级大模型,凭借其独特的技术架构和卓越性能,在众多模型中脱颖而出。本文将深入探讨Qwen3-0.6B的技术特性、优势以及应用场景,带你领略这款轻量级大模型的魅力。一、Qwen3-0.6B核心技术架构Qwen3-0.6B基于Transformer架构进行优化,采用了一系列先进的技术手段,在保证模型
- OneCode技术架构深度解析:自主UI体系、注解驱动与全栈开发的协同优势
低代码老李
OneCode产品介绍OneCode实战软件行业架构ui
引言:低代码平台的技术基石在AIGC与数字化转型的双重驱动下,企业级低代码平台已从简单的界面搭建工具演进为全栈业务开发环境。OneCode作为国内领先的低代码开发平台,其核心竞争力源于三大技术支柱:自主可控的UI体系、注解驱动的开发模式和端到端的全栈支持能力。这三大支柱形成有机整体,使OneCode在开发效率、系统集成和业务适应性方面建立起显著优势。本文将深入剖析这些技术特性的实现原理与应用价值,
- 从源码到思想:OneCode框架模块化设计如何解决前端大型应用痛点
低代码老李
软件行业领域设计低代码前端框架架构
在前端大型应用开发中,“模块拆分混乱、依赖关系复杂、资源加载失控”是三大痛点。OneCode框架通过Module.js(模块基类)和ModuleFactory.js(模块工厂)构建了一套完整的模块化管理机制,不仅实现了模块的“生老病死”全生命周期管控,更解决了跨模块通信、依赖加载等核心问题。本文从“为什么这么设计”的角度,拆解其底层逻辑与实战价值。一、先理解:前端模块化的核心矛盾无论用什么框架,模
- Transformer模型压缩:结构化剪枝与混合精度量化研究
pk_xz123456
仿真模型机器学习深度学习transformer剪枝深度学习
Transformer模型压缩:结构化剪枝与混合精度量化研究摘要本文针对Transformer模型在实际部署中面临的计算资源消耗大、内存占用高和推理延迟等问题,提出了一种结合结构化剪枝与混合精度量化的综合压缩方案。我们首先分析了Transformer模型的结构特点及其在计算效率方面的瓶颈,然后系统地研究了结构化剪枝和混合精度量化的理论基础与实现方法。通过实验验证,我们的方法在保持模型性能的同时显著
- 【JDBC痛点终结者】MyBatis如何优雅解决传统数据库操作的七大难题
码农技术栈
MyBatis数据库mybatistomcatjava开发语言后端性能优化
你是否曾在JDBC的ResultSet和PreparedStatement的海洋中迷失方向?是否被无数重复的模板代码折磨得精疲力尽?本文将带你揭秘MyBatis如何优雅解决JDBC的痛点,让你告别繁琐,拥抱高效!一、先看一个真实场景:JDBCvsMyBatis1.JDBC实现用户查询//JDBC查询用户publicUserfindUserById(intid)throwsSQLException{
- 机器学习笔记——支持向量机
star_and_sun
机器学习笔记支持向量机
支持向量机参数模型对分布需要假设(这也是与非参数模型的区别之一)间隔最大化,形式转化为凸二次规划问题最大化间隔间隔最大化是意思:对训练集有着充分大的确信度来分类训练数据,最难以分的点也有足够大的信度将其分开间隔最大化的分离超平面的的求解怎么求呢?最终的方法如下1.线性可分的支持向量机的优化目标其实就是找得到分离的的超平面求得参数w和b的值就可以了注意,最大间隔分离超平面是唯一的,间隔叫硬间隔1.1
- 【机器学习&深度学习】多分类评估策略
一叶千舟
深度学习【理论】深度学习【应用必备常识】大数据人工智能
目录前言一、多分类3大策略✅宏平均(MacroAverage)✅加权平均(WeightedAverage)✅微平均(MicroAverage)二、类比理解2.1宏平均(MacroAverage)2.1.1计算方式2.1.2适合场景2.1.3宏平均不适用的场景2.1.4宏平均一般用在哪些指标上?2.1.5怎么看macroavg指标?2.1.6宏平均值低说明了什么?2.1.7从宏平均指标中定位模型短板
- 大模型RLHF强化学习笔记(二):强化学习基础梳理Part2
Gravity!
大模型笔记大模型LLM强化学习人工智能
【如果笔记对你有帮助,欢迎关注&点赞&收藏,收到正反馈会加快更新!谢谢支持!】一、强化学习基础1.4强化学习分类根据数据来源划分Online:智能体与环境实时交互,如Q-Learning、SARSA、Actor-CriticOffline:智能体使用预先收集的数据集进行学习根据策略更新划分On-Policy:学习和行为策略是相同的,数据是按照当前策略生成的,如SARSAOff-Policy:学习策
- 解锁数据结构“黑科技”:查表法的奇幻冒险
大雨淅淅
#数据结构数据结构算法开发语言
目录一、数据结构的“神秘地图”:认识查表法二、揭开查表法的神秘面纱(一)构建查找表(二)在表中进行查找三、实际案例大揭秘(一)案例一:简单数值查找(二)案例二:复杂关系查找四、查表法的优势与局限(一)优势尽显(二)局限剖析五、与其他查找方法的巅峰对决(一)与顺序查找的较量(二)与折半查找的比拼六、查表法的应用领域大赏(一)嵌入式系统中的“得力助手”(二)数据处理中的“高效利器”七、总结与展望一、数
- MIAOYUN | 每周AI新鲜事儿(06.27-07.04)
人工智能深度学习算法云计算
在科技飞速发展的当下,AI已成为推动各行业变革的核心力量。为助您紧跟AI发展浪潮,把握前沿动态,MIAOYUN特别推出「每周AI新鲜事儿」,涵盖技术突破、新模型发布、研究报告等多个方面,一起来回顾本周发生的AI新鲜事儿吧!AI开源大模型腾讯混元发布首款开源混合推理MoE模型「Hunyuan-A13B」6月27日,腾讯混元宣布开源首个混合推理MoE模型「Hunyuan-A13B」,总参数80B,激活
- 未来数据库硬件-网络篇
数据库云计算架构
本文在绿泡泡“狗哥琐话”首发于2025.2.17<-关注不走丢。最近看到一篇不错的文章,叫做“ModernHardwareforFutureDatabases”,里面从几个方向讲了下现在数据库的硬件发展趋势,今天先来说说网络篇。内容中,一位大佬对(获过图灵奖的大佬)OLTP系统进行了一些基准测试,发现TCP-IP协议栈对于总体CPU使用率是占在47~68%。如果使用的网络带宽增加,这个开销还会提升
- 产品经理高效工作指南,核心能力全拆解!
AI大模型-大飞
产品经理人工智能大数据智能体程序员大模型大模型学习
在互联网行业的激烈竞争中,产品经理作为产品的“操盘手”,其工作流程的科学性与专业性直接决定着产品的成败。想要高效推进产品从0到1、实现从1到N的迭代,必须吃透日常工作的每个环节。今天,我们就用思维导图为你拆解产品经理9大核心工作流程,从需求到迭代全链路解析,助力你成为更专业的PM!一、需求分析与市场调研:产品的“方向盘”需求分析是产品工作的起点,决定着产品是否贴合市场。市场调研:定期研究行业动态(
- 大语言模型应用指南:ReAct 框架
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
大语言模型应用指南:ReAct框架关键词:大语言模型,ReAct框架,自然语言处理(NLP),模型融合,多模态学习,深度学习,深度学习框架1.背景介绍1.1问题由来近年来,深度学习技术在自然语言处理(NLP)领域取得了显著进展。尤其是大语言模型(LargeLanguageModels,LLMs),如BERT、GPT系列等,通过在大规模无标签数据上进行预训练,获得了强大的语言理解和生成能力。然而,预
- 破局·重构·新生:程序员三大黄金赛道突围指南
还债大湿兄
重构
当代码成为新时代的钢筋水泥,35岁不再是职业终点站,而是经验升维的战略转折点。在国产替代浪潮、芯片自主攻坚与工业智能化变革的交汇处,程序员的核心价值正在被重新定义。一、三大赛道:技术国产化的历史性机遇1.国产软件替代化:从“卡脖子”到“强心脏”EDA工业软件的破局之战正成为国产替代的先锋战场。2025年,中国EDA市场规模预计达184.9亿元,年均增速14.71%,但国产化率仍不足10%,研发设计
- 目前最火的agent方向-A2A快速实战构建(二): AutoGen模型集成指南:从OpenAI到本地部署的全场景LLM解决方案
引言:打破模型壁垒,构建灵活AI应用在AI应用开发中,大语言模型(LLM)的选择往往决定了系统的能力边界。AutoGen通过标准化的模型客户端协议,实现了对OpenAI、AzureOpenAI、本地模型等多源LLM的统一接入,让开发者能够根据场景需求自由切换模型服务。本文将深入解析AutoGen的模型集成框架,从云端服务到本地部署,助你构建弹性可扩展的AI代理系统。一、模型客户端核心架构:统一接口
- 大语言模型原理基础与前沿 基于语言反馈进行微调
AI天才研究院
计算AI大模型企业级应用开发实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理基础与前沿基于语言反馈进行微调作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来随着深度学习技术的飞速发展,自然语言处理(NLP)领域取得了显著的进展。大语言模型(LargeLanguageModels,LLMs)如GPT-3、BERT等在各项NLP任务上取得了令人瞩目的成绩。然而,如何进一步提高大语言模型的理
- 大模型训练与微调(1)——优化器选择总结
John_今天务必休息一天
人工智能机器学习深度学习
大模型训练与微调(1)——优化器选择总结一、AdamW优化器:成熟稳定的主流选择二、Lion优化器:谷歌提出的高效替代方案三、其他优化器的补充应用四、优化器选择趋势与实验对比五、未来发展方向当前最新的大模型在优化器的选择上,主要结合了传统优化器的稳定性与新型优化器的效率优势。以下是主流大模型采用的优化器及其技术特点的总结:一、AdamW优化器:成熟稳定的主流选择核心原理与改进AdamW是Adam的
- 新手必看:入行大模型前一定要知道的几件事!
和老莫一起学AI
人工智能java机器学习大模型算法程序员转行
大模型怎么转?适合哪些人?哪些方向对新手友好?又有哪些坑你必须避开?文章有点长,但全是我这几年观察下来最真实的经验,如果你真的想搞懂大模型、入场不踩坑,建议认真读完,或先收藏慢慢看。一、大模型≠ChatGPT,先搞清“全景图”再出发说句真话,很多人对“大模型”的第一印象就是——ChatGPT。但这只是它的"最上层",底下的基建、平台、算法、数据处理、推理部署……才是撑起整个技术栈的骨架。入行大模型
- 10.2 ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt人工智能机器学习语言模型
ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍使用ChatGPT自动设计生成训练数据的Prompt在大模型微调场景中,高质量训练数据的获取往往是制约模型效果的核心瓶颈。根据2023年GoogleResearch的实证研究,使用GPT-4生成的合成数据对LLaMA2进行微调,能达到人工标注数据85%的效果水平。本章将揭秘如何通过ChatGPT自动生成适配ChatGLM3的微调数据。一、
- 项目管理中,范围管理和需求管理有什么区别
易成技术团队
即时通讯工具
范围管理与需求管理在项目管理中存在以下五大核心区别:1、关注层级不同、2、管理目标不同、3、输出成果不同、4、涉及角色不同、5、所用工具与流程不同。其中,“关注层级不同”是二者的根本分野。需求管理聚焦于收集和分析利益相关者的真实需求,回答“用户想要什么”;而范围管理则是在项目层面明确要交付的全部工作,回答“我们做什么、不做什么”。这种层级差异决定了需求是制定范围的输入源,范围是实现需求的边界框架,
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 「源力觉醒 创作者计划」_文心大模型开源:开启 AI 新时代的大门
小黄编程快乐屋
人工智能
在人工智能的浩瀚星空中,大模型技术宛如一颗璀璨的巨星,照亮了无数行业前行的道路。自诞生以来,大模型凭借其强大的语言理解与生成能力,引发了全球范围内的技术变革与创新浪潮。百度宣布于6月30日开源文心大模型4.5系列,这一消息如同一颗重磅炸弹,在AI领域掀起了惊涛骇浪,其影响之深远,意义之重大,足以改写行业的发展轨迹。百度这次放大招,直接把文心大模型4.5开源了,这操作就像往国内AI圈子里空投了一个超
- SFT(监督微调)详解:零基础入门到精通,一篇详细的入门教程!
AGI大模型老王
人工智能程序员大模型学习AI大模型大模型微调SFT
文章目录具体步骤如下:应用场景优点举例步骤1:预训练模型的选择步骤2:数据收集与标注步骤3:数据预处理步骤4:数据集划分步骤5:加载预训练模型步骤6:数据编码步骤7:创建数据加载器步骤8:定义训练过程步骤9:模型评估步骤10:模型保存零基础入门AI大模型一、全套AGI大模型学习路线二、640套AI大模型报告合集三、AI大模型经典PDF籍四、AI大模型商业化落地方案学习计划:资料领取SFT(监督微调
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- 从新闻到知识图谱:用大模型和知识工程“八步成诗”打造科技并购大脑
许泽宇的技术分享
知识图谱科技人工智能
一句话摘要:本文带你用现代NLP和知识图谱技术,把科技公司并购新闻变成结构化的知识大脑,过程全景揭秘,理论与实战齐飞,代码只用伪代码,干货与段子齐发,助你成为AI知识工程老司机!前言:为什么要把新闻变成知识图谱?想象一下,你是个投资分析师,老板让你一周内梳理全球科技并购大事件,找出谁在买谁、花了多少钱、背后有哪些大佬、涉及哪些新技术……你会怎么做?A.手动Ctrl+F,Excel狂敲,熬夜爆肝?B
- 11 DPDK 探索 大页内存原理
在分析dpdk大页内存的源码之前,有必要对linux内存管理的原理以及大页内存的原理有个了解,缺少这些底层基础知识,分析dpdk大页内存的源码将举步维艰。这篇文章详细介绍下linux内存管理以及大页内存的方方面面,为分析dpdk大页内存源码扫除障碍。一、linux内存管理原理1、mmu内存管理的引入在没有引入mmu内存管理单元时,对于32位操作系统,每个进程都有2的32次方的地址空间(4G)。如果
- python模拟行星运动_动态模拟运行太阳系的行星运转
在地理学科中,都要学习认识太阳系的知识,对于天体的运动,没有动态演示的话,学生们只能凭空想象,无法观看到九大行星之间到底是如何运转的。几何画板作为人教版指定教育软件,被老师们广泛用于教学中,不仅仅可以用来演示几何图形,还可以应用在地理学科中演示天体运动情况,下面就给大家介绍利用几何画板制作的动态模拟运行太阳系的九大行星课件。几何画板动态模拟运行太阳系的九大行星课件样图:几何画板课件模板——动态模拟
- 免费棱光 PDF:免安装 加水印 去水印 批量格式转换
小瑞软件库
开源软件电脑软件构建
各位办公小能手们,今天给大家介绍一款超棒的PDF处理工具——棱光PDF!它完全免费,专门解决咱对PDF文件的常见操作需求。绿色免安装,体积小得跟颗花生米似的,打开就能用。它有三大核心功能,分别是水印管理、格式转换和批量处理。软件下载地址安装包先说说水印处理,你可以给PDF文件加上自定义的文字或者图片水印,还能随便调整水印的位置、大小和透明度。要是文档里已经有水印,它也能精准识别,然后一键清除。,把
- 巧用云平台API实现开源模型免费调用的实战教程
herosunly
AIGC人工智能大模型API实战教程
大家好,我是herosunly。985院校硕士毕业,现担任算法工程师一职,获得CSDN博客之星第一名,热衷于大模型算法的研究与应用。曾担任百度千帆大模型比赛、BPAA算法大赛评委,编写微软OpenAI考试认证指导手册。曾获得多项AI顶级比赛的Top名次,其中包括阿里云、科大讯飞比赛第一名,CCF、开放原子比赛二等奖。在技术创新领域拥有多项授权发明。曾辅导多位非科班出身的同学成功进入算法行业就业
- 搜索之BFS
Luther coder
宽度优先c++
目录一.BFS简介二.BFS主要应用和实现三.典型例题(1)P1443马的遍历-洛谷(2)P8693[蓝桥杯2019国AC]大胖子走迷宫-洛谷四.总结一.BFS简介BFS(图论):广度优先搜索,是一种用于遍历或搜索树或图的算法。所谓广度优先,就是说按照圈层搜索。二.BFS主要应用和实现在搜索算法中,该BFS常常指利用队列实现广度优先搜索,从而寻找最短距离。与图论中的BFS算法有一定相似之处,但并不
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》