- 目标跟踪领域经典论文解析
♢.*
目标跟踪人工智能计算机视觉
亲爱的小伙伴们,在求知的漫漫旅途中,若你对深度学习的奥秘、JAVA、PYTHON与SAP的奇妙世界,亦或是读研论文的撰写攻略有所探寻,那不妨给我一个小小的关注吧。我会精心筹备,在未来的日子里不定期地为大家呈上这些领域的知识宝藏与实用经验分享。每一个点赞,都如同春日里的一缕阳光,给予我满满的动力与温暖,让我们在学习成长的道路上相伴而行,共同进步✨。期待你的关注与点赞哟!目标跟踪是计算机视觉领域的一个
- 【图像处理入门】12. 综合项目与进阶:超分辨率、医学分割与工业检测
小米玄戒Andrew
图像处理:从入门到专家图像处理人工智能深度学习算法python计算机视觉CV
摘要本周将聚焦三个高价值的综合项目,打通传统算法与深度学习的技术壁垒。通过图像超分辨率重建对比传统方法与深度学习方案,掌握医学图像分割的U-Net实现,设计工业缺陷检测的完整流水线。每个项目均包含原理解析、代码实现与性能优化,帮助读者从“技术应用”迈向“系统设计”。一、项目1:图像超分辨率重建(从模糊到清晰的跨越)1.技术背景与核心指标超分辨率(SR)是通过算法将低分辨率(LR)图像恢复为高分辨率
- Densenet模型花卉图像分类
深度学习乐园
分类数据挖掘人工智能
项目源码获取方式见文章末尾!600多个深度学习项目资料,快来加入社群一起学习吧。《------往期经典推荐------》项目名称1.【基于CNN-RNN的影像报告生成】2.【卫星图像道路检测DeepLabV3Plus模型】3.【GAN模型实现二次元头像生成】4.【CNN模型实现mnist手写数字识别】5.【fasterRCNN模型实现飞机类目标检测】6.【CNN-LSTM住宅用电量预测】7.【VG
- 基于AFM注意因子分解机的推荐算法
深度学习乐园
深度学习实战项目深度学习科研项目推荐算法算法机器学习
关于深度实战社区我们是一个深度学习领域的独立工作室。团队成员有:中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等,曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万+粉丝,拥有2篇国家级人工智能发明专利。社区特色:深度实战算法创新获取全部完整项目数据集、代码、视频教程,请进入官网:zzgcz.com。竞赛/论文/毕设项目辅导答疑,v:zzgcz_com1.项目简介项目A033基于A
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 卷积神经网络(Convolutional Neural Network, CNN)
不想秃头的程序
神经网络语音识别人工智能深度学习网络卷积神经网络
卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种专门用于处理图像、视频等网格数据的深度学习模型。它通过卷积层自动提取数据的特征,并利用空间共享权重和池化层减少参数量和计算复杂度,成为计算机视觉领域的核心技术。以下是CNN的详细介绍:一、核心思想CNN的核心目标是从图像中自动学习层次化特征,并通过空间共享权重和平移不变性减少参数量和计算成本。其关键组件包括:卷积层(
- ResNet(Residual Network)
不想秃头的程序
神经网络语音识别人工智能深度学习网络残差网络神经网络
ResNet(ResidualNetwork)是深度学习中一种经典的卷积神经网络(CNN)架构,由微软研究院的KaimingHe等人在2015年提出。它通过引入残差连接(SkipConnection)解决了深度神经网络中的梯度消失问题,使得网络可以训练极深的模型(如上百层),并在图像分类、目标检测、语义分割等任务中取得了突破性成果。以下是ResNet的详细介绍:一、核心思想ResNet的核心创新是
- P25:LSTM实现糖尿病探索与预测
?Agony
lstm人工智能rnn
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊一、相关技术1.LSTM基本概念LSTM(长短期记忆网络)是RNN(循环神经网络)的一种变体,它通过引入特殊的结构来解决传统RNN中的梯度消失和梯度爆炸问题,特别适合处理序列数据。结构组成:遗忘门:决定丢弃哪些信息,通过sigmoid函数输出0-1之间的值,表示保留或遗忘的程度。输入门:决定更新哪些信息,同样通过sigmoid函数控制更新
- Python训练营打卡——DAY16(2025.5.5)
cosine2025
Python训练营打卡python开发语言机器学习
目录一、NumPy数组基础笔记1.理解数组的维度(Dimensions)2.NumPy数组与深度学习Tensor的关系3.一维数组(1DArray)4.二维数组(2DArray)5.数组的创建5.1数组的简单创建5.2数组的随机化创建5.3数组的遍历5.4数组的运算6.数组的索引6.1一维数组索引6.2二维数组索引6.3三维数组索引二、SHAP值的深入理解三、总结1.NumPy数组基础总结2.SH
- 【机器学习&深度学习】反向传播机制
目录一、一句话定义二、类比理解三、为什重要?四、用生活例子解释:神经网络=烹饪机器人4.1第一步:尝一口(前向传播)4.2第二步:倒着推原因(反向传播)五、换成人工智能流程说一遍六、图示类比:找山顶(最优参数)七、总结一句人话八、PyTorch代码示例:亲眼看到每一层的梯度九、梯度=损失函数对参数的偏导数十、类比总结反向传播(Backpropagation)是神经网络中训练过程的核心机制,它就像“
- 人脸识别算法赋能园区无人超市安防升级
智驱力人工智能
算法人工智能边缘计算人脸识别智慧园区智慧工地智慧煤矿
人脸识别算法赋能园区无人超市安防升级正文在园区无人超市的运营管理中,传统安防手段依赖人工巡检或基础监控设备,存在响应滞后、误报率高、环境适应性差等问题。本文从技术背景、实现路径、功能优势及应用场景四个维度,阐述如何通过人脸识别检测、人员入侵算法及疲劳检测算法的协同应用,构建高效、精准的智能安防体系。一、技术背景:视觉分析算法的核心支撑人脸识别算法基于深度学习的卷积神经网络(CNN)模型,通过提取面
- 【Python深度学习】零基础掌握Pytorch Pooling layers nn.MaxPool方法
Mr数据杨
Python深度学习python深度学习pytorch
在深度学习的世界中,MaxPooling是一种关键的操作,用于降低数据的维度并保留重要特征。这就像是从一堆照片中挑选出最能代表某个场景的那张。PyTorch提供了多种MaxPooling层,包括nn.MaxPool1d、nn.MaxPool2d和nn.MaxPool3d,它们分别适用于不同维度的数据处理。如果处理的是声音信号(一维数据),就会用到nn.MaxPool1d。而处理图像(二维数据)时,
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 【深度学习解惑】如果用RNN实现情感分析或文本分类,你会如何设计数据输入?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习rnn分类人工智能机器学习神经网络
以下是用RNN实现情感分析/文本分类时数据输入设计的完整技术方案:1.引言与背景介绍情感分析/文本分类是NLP的核心任务,目标是将文本映射到预定义类别(如正面/负面情感)。RNN因其处理序列数据的天然优势成为主流方案。核心挑战在于如何将非结构化的文本数据转换为适合RNN处理的数值化序列输入。2.原理解释文本到向量的转换流程:原始文本分词建立词汇表词索引映射词嵌入层序列向量关键数学表示:词嵌入表示:
- Pytorch模型安卓部署
python&java
pytorch人工智能python
Pytorch是一种流行的深度学习框架,用于算法开发,而Android是一种广泛应用的操作系统,多应用于移动设备当中。目前多数的研究都是在于算法上,个人觉得把算法落地是一件很有意思的事情,因此本人准备分享一些模型落地的文章(后续可能分享微信小程序部署,PyQt部署以及exe打包,ncnn部署,tensorRT部署,MNN部署)。本篇文章主要分享Pytorch的Android端部署。看这篇文章的读者
- 人工智能-基础篇-5-建模方式(判别式模型和生成式模型)
机器学习包括了多种建模方式,其中判别式建模(DiscriminativeModel)和生成式建模是最常见的两种。这两种建模方式都可以通过深度学习技术来实现,并用于创建不同类型的模型。简单来说:想要创建一个模型,依赖需求需要合适的建模方式来创建这个模型。通常建模方式主要分为两大类。一类是判别式模型,针对输入数据给出特定的输出。如:判断一张图片是猫还是狗,直接学习“猫”和“狗”的特征差异(如耳朵形状、
- PyTorch教程:LSTM语言模型的动态量化技术解析
怀灏其Prudent
PyTorch教程:LSTM语言模型的动态量化技术解析tutorialsPyTorchtutorials.项目地址:https://gitcode.com/gh_mirrors/tuto/tutorials前言在深度学习模型部署过程中,模型大小和推理速度是两个至关重要的考量因素。PyTorch提供的动态量化技术能够在不显著影响模型准确率的前提下,有效减小模型体积并提升推理速度。本文将深入解析如何对
- 【机器学习】数学基础——张量(傻瓜篇)
一叶千舟
深度学习【理论】机器学习人工智能
目录前言一、张量的定义1.标量(0维张量)2.向量(1维张量)3.矩阵(2维张量)4.高阶张量(≥3维张量)二、张量的数学表示2.1张量表示法示例三、张量的运算3.1常见张量运算四、张量在深度学习中的应用4.1PyTorch示例:张量在神经网络中的运用五、总结:张量的多维世界延伸阅读前言在机器学习、深度学习以及物理学中,张量是一个至关重要的概念。无论是在人工智能领域的神经网络中,还是在高等数学、物
- 后端开发实习生简历迭代的5个版本,希望能帮你找到实习
今天不coding
简历实习后端Java大厂暑期实习
后端开发实习生简历迭代的5个版本,希望能帮你找到实习1.0研究生开学时写的第一份简历,主要是对本科做的项目的一些总结。本科主要是以深度学习的项目为主+比赛,开发的技术学的比较少,后端的项目也没有做过。但是凭此找到了一份算法的实习。当时研一还是想走算法工程师的。后面觉得自己不适合,就放弃了。2.0经历过几个月的算法实习和论文折磨之后,决定走后端开发岗了,选择Java为主语言,在B站大学做了一个项目,
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 深度学习详解:通过案例了解机器学习基础
beist
深度学习机器学习人工智能
引言机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是现代人工智能领域中的两个重要概念。通过让机器具备学习的能力,机器可以从数据中自动找到函数,并应用于各种任务,如语音识别、图像识别和游戏对战等。在这篇笔记中,我们将通过一个简单的案例,逐步了解机器学习的基础知识。1.1机器学习案例学习1.1.1回归问题与分类问题在机器学习中,根据所要解决的问题类型,任务
- 大模型量化
需要重新演唱
大模型量化
大模型量化是一种优化技术,旨在减少深度学习模型的内存占用和提高推理速度,同时尽量保持模型的精度。量化通过将模型中的浮点数权重和激活值转换为较低精度的表示形式来实现这一目标。以下是关于大模型量化的详细知识:目录1.量化基础1.1量化定义1.2量化优势1.3量化挑战2.量化方法2.1量化类型2.2量化粒度2.3量化算法3.量化实践3.1量化流程3.2量化工具4.量化案例4.1BERT量化4.2GPT-
- 从0开始学习计算机视觉--Day04--线性分类
Chef_Chen
学习计算机视觉分类
从宏观来看,卷积网络可以看做是由一个个不同的神经网络组件组合而成,就像积木一样通过不同类型的组件搭建形成,其中线性分类器是一个很重要的组件,在很多卷积网络中都有用到,所以了解清楚它的工作原理对我们后续的学习会有很大的帮助。线性分类器是参数模型中最简单,最基础的例子,下面我们用输入图片输出图片分类的模型的例子来更进一步地了解它。首先,我们输入一张图片到模型中,输入后我们就会得到f(x,W),x指的是
- pytorch 要点之雅可比向量积
AI大模型教程
pytorch人工智能pythonfacebook深度学习机器学习webpack
自动微分是PyTorch深度学习框架的核心。既然是核心,就需要敲黑板、划重点学习。同时,带来另外一个重要的数学概念:雅可比向量积。PyTorch中的自动微分与雅可比向量积自动微分(AutomaticDifferentiation,AD)是深度学习框架中的关键技术之一,它使得模型训练变得更加简单和高效。且已知:PyTorch是一个广泛使用的深度学习框架,它内置了强大的自动微分功能。在本文中,我们将深
- 昇腾AI生态组件全解析:与英伟达生态的深度对比
随着人工智能技术的快速发展,国产AI芯片的崛起正在改变全球计算产业的格局。华为昇腾(Ascend)系列AI处理器凭借自主创新的达芬奇架构,构建了完整的软硬件生态体系。本文将从核心组件对比、显卡性能对标两个维度,深入剖析昇腾与英伟达(NVIDIA)生态的技术差异与适用场景。一、昇腾核心组件与英伟达对标分析1.推理引擎:MindIEvsTensorRT昇腾MindIE1.0.0基于昇腾芯片的深度学习推
- 智能汽车图像及视频处理方案,支持视频智能包装创作能力
美摄科技
汽车
在这个日新月异的智能时代,每一帧画面都承载着超越想象的力量。随着自动驾驶技术的飞速发展,智能汽车不仅成为了未来出行的代名词,更是技术与艺术完美融合的典范。在这场变革的浪潮中,美摄科技以创新为翼,推出了领先的智能汽车图像及视频处理方案,为智能汽车行业带来了前所未有的视觉盛宴,重新定义了智能出行的视觉体验。一、智能重塑,视觉新境界美摄科技的智能汽车图像及视频处理方案,是基于深度学习、人工智能及大数据处
- 深度学习计算机视觉开源系统OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置【详细、可运行】
nomoremorphine
深度学习计算机视觉开源
OpenMMLab(mmsegmentation、mmdetection、mmpose)环境配置OpenMMLab简介优势:一、Windows/Linux下环境配置(以mmsegmentationv1.2.2(最新版)为例)0.确认安装版本信息1)确认电脑显卡版本2)确认mmcv对应版本3)确认版本1.安装CUDA和cuDNN2.创建conda环境,下载pytorch3.安装mmcv4.安装MMS
- 编译OpenCV支持CUDA视频解码
AI标书
pythonopenvccudanvidiadockerbuild
如何在Ubuntu上编译OpenCV并启用CUDA视频解码支持(cudacodec)在深度学习、视频处理等高性能计算领域,OpenCV的GPU加速功能非常重要。特别是它的cudacodec模块,能直接利用NVIDIA硬件实现高效的视频解码,极大提升性能。本文将基于Ubuntu环境,详细介绍从环境准备到编译安装OpenCV,并开启cudacodec模块的全过程。完整的shell脚本以及本次编译所用到
- 深度学习:梯度下降法
数字化与智能化
人工智能深度学习深度学习梯度下降法
一、梯度的概念(1)什么是梯度梯度的本意是一个向量(矢量),表示某一函数在该点处的方向导数沿着该方向取得最大值,即函数在该点处沿着该方向(此梯度的方向)变化最快,变化率最大(为该梯度的模)。对于一个多元函数f(x1,x2,...,xn),其梯度是一个由函数偏导数组成的向量,其梯度表示为:Gradient=(∂f/∂x1,∂f/∂x2,...,∂f/∂xn)其中,∂f/∂xi表示函数f对第i个自变量
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持