POJ-3017 Cut the Sequence DP+单调队列+堆

  题目链接:http://poj.org/problem?id=3017

  这题的DP方程是容易想到的,f[i]=Min{ f[j]+Max(num[j+1],num[j+2],......,num[i]) | 满足m的下界<j<=i },复杂度O(n^2),妥妥的TLE。其实很多都决策都是没有必要的,只要保存在满足m的区间内,num值单调递减的的那些决策。如果遍历的话,一个下降的序列会退化到O(n^2),于是用堆来优化。。。堆优化这里,纠结了很久T_T,,,网上很多代码都是直接用set来处理,但是set在erase元素的都是会把相同的元素都除掉,应该是只erase一个元素,因为相同的元素中其它的可能会存在队列中。。。难道是数据弱了?。。。

 1 //STATUS:C++_AC_1172MS_1352KB

 2 #include <functional>

 3 #include <algorithm>

 4 #include <iostream>

 5 //#include <ext/rope>

 6 #include <fstream>

 7 #include <sstream>

 8 #include <iomanip>

 9 #include <numeric>

10 #include <cstring>

11 #include <cassert>

12 #include <cstdio>

13 #include <string>

14 #include <vector>

15 #include <bitset>

16 #include <queue>

17 #include <stack>

18 #include <cmath>

19 #include <ctime>

20 #include <list>

21 #include <set>

22 #include <map>

23 using namespace std;

24 //using namespace __gnu_cxx;

25 //define

26 #define pii pair<int,int>

27 #define mem(a,b) memset(a,b,sizeof(a))

28 #define lson l,mid,rt<<1

29 #define rson mid+1,r,rt<<1|1

30 #define PI acos(-1.0)

31 //typedef

32 typedef __int64 LL;

33 typedef unsigned __int64 ULL;

34 //const

35 const int N=100010;

36 const int INF=0x3f3f3f3f;

37 const int MOD=100000,STA=8000010;

38 const LL LNF=1LL<<60;

39 const double EPS=1e-8;

40 const double OO=1e15;

41 const int dx[4]={-1,0,1,0};

42 const int dy[4]={0,1,0,-1};

43 const int day[13]={0,31,28,31,30,31,30,31,31,30,31,30,31};

44 //Daily Use ...

45 inline int sign(double x){return (x>EPS)-(x<-EPS);}

46 template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}

47 template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}

48 template<class T> inline T lcm(T a,T b,T d){return a/d*b;}

49 template<class T> inline T Min(T a,T b){return a<b?a:b;}

50 template<class T> inline T Max(T a,T b){return a>b?a:b;}

51 template<class T> inline T Min(T a,T b,T c){return min(min(a, b),c);}

52 template<class T> inline T Max(T a,T b,T c){return max(max(a, b),c);}

53 template<class T> inline T Min(T a,T b,T c,T d){return min(min(a, b),min(c,d));}

54 template<class T> inline T Max(T a,T b,T c,T d){return max(max(a, b),max(c,d));}

55 //End

56 

57 int num[N],q[N];

58 int n;

59 LL m,f[N];

60 multiset<int> sbt;

61 

62 int main()

63 {

64  //   freopen("in.txt","r",stdin);

65     int i,j,l,r,p,ok;

66     LL sum;

67     while(~scanf("%d%I64d",&n,&m))

68     {

69         l=sum=0;r=-1;

70         sbt.clear();

71         ok=1;

72         for(i=p=1;i<=n;i++){

73             scanf("%d",&num[i]);

74             sum+=num[i];

75             while(sum>m)sum-=num[p++];

76             if(p>i){ok=0;break;}

77             while(l<=r && num[i]>=num[q[r]]){

78                 if(l<r)sbt.erase(f[q[r-1]]+num[q[r]]);

79                 r--;

80             }

81             q[++r]=i;

82             if(l<r)sbt.insert(f[q[r-1]]+num[q[r]]);

83             while(q[l]<p){

84                 if(l<r)sbt.erase(f[q[l]]+num[q[l+1]]);

85                 l++;

86             }

87             f[i]=f[p-1]+num[q[l]];

88             if(l<r)f[i]=Min(f[i],(LL)*sbt.begin());

89         }

90         for(;i<=n;i++)

91             scanf("%d",&j);

92 

93         printf("%I64d\n",ok?f[n]:-1);

94     }

95     return 0;

96 }

 

你可能感兴趣的:(sequence)