const double eps = 1e-8; struct Point { double x,y; Point(double tx = 0,double ty = 0) : x(tx),y(ty){} }; typedef Point Vtor; //向量的加减乘除 Vtor operator + (Vtor A,Vtor B) { return Vtor(A.x + B.x,A.y + B.y); } Vtor operator - (Point A,Point B) { return Vtor(A.x - B.x,A.y - B.y); } Vtor operator * (Vtor A,double p) { return Vtor(A.x*p,A.y*p); } Vtor operator / (Vtor A,double p) { return Vtor(A.x/p,A.y/p); } bool operator < (Point A,Point B) { return A.x < B.x || (A.x == B.x && A.y < B.y);} int dcmp(double x){ if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; } bool operator == (Point A,Point B) {return dcmp(A.x - B.x) == 0 && dcmp(A.y - B.y) == 0; } //向量的点积,长度,夹角 double Dot(Vtor A,Vtor B) { return A.x*B.x + A.y*B.y; } double Length(Vtor A) { return sqrt(Dot(A,A)); } double Angle(Vtor A,Vtor B) { return acos(Dot(A,B)/Length(A)/Length(B)); } //叉积,三角形面积 double Cross(Vtor A,Vtor B) { return A.x*B.y - A.y*B.x; } double Area2(Point A,Point B,Point C) { return Cross(B - A,C - A); } //向量的旋转,求向量的单位法线(即左转90度,然后长度归一) Vtor Rotate(Vtor A,double rad){ return Vtor(A.x*cos(rad) - A.y*sin(rad),A.x*sin(rad) + A.y*cos(rad)); } Vtor Normal(Vtor A) { double L = Length(A); return Vtor(-A.y/L, A.x/L); } //直线的交点 Point GetLineIntersection(Point P,Vtor v,Point Q,Vtor w) { Vtor u = P - Q; double t = Cross(w,u)/Cross(v,w); return P + v*t; } //点到直线的距离 double DistanceToLine(Point P,Point A,Point B) { Vtor v1 = B - A; return fabs(Cross(P - A,v1))/Length(v1); } //点到线段的距离 double DistanceToSegment(Point P,Point A,Point B) { if (A == B) return Length(P - A); Vtor v1 = B - A , v2 = P - A, v3 = P - B; if (dcmp(Dot(v1,v2)) < 0) return Length(v2); else if (dcmp(Dot(v1,v3)) > 0) return Length(v3); else return fabs(Cross(v1,v2))/Length(v1); } //点到直线的映射 Point GetLineProjection(Point P,Point A,Point B) { Vtor v = B - A; return A + v*Dot(v,P - A)/Dot(v,v); } //判断线段是否规范相交 bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2) { double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1), c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } //判断点是否在一条线段上 bool OnSegment(Point P,Point a1,Point a2) { return dcmp(Cross(a1 - P,a2 - P)) == 0 && dcmp(Dot(a1 - P,a2 - P)) < 0; } //多边形面积 double PolgonArea(Point *p,int n) { double area = 0; for (int i = 1; i < n - 1; ++i) area += Cross(p[i] - p[0],p[i + 1] - p[0]); return area/2; }
和圆有关的计算
struct Line { Point p; Vtor v; Line(Point p,Vtor v) : p(p),v(v){} Point point(double t) { return p + v*t; } }; struct Circle { Point c; double r; Circle(Point tc,double tr) : c(tc),r(tr){} Point point(double a) { return Point(c.x + cos(a)*r + c.y + sin(a)*r); } }; //判断圆与直线是否相交以及求出交点 int getLineCircleIntersection(Line L,Circle C,double t1,double t2,vector<Point> &sol) { //注意sol没有清空哦 double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y; double e = a*a + c*c , f = 2*(a*b + c*d), g = b*b + d*d; double delta = f*f - 4*e*g; if (dcmp(delta) < 0) return 0; else if (dcmp(delta) == 0) { t1 = t2 = -f/(2*e); sol.push_back(L.point(t1)); return 1; } t1 = (-f - sqrt(delta))/(2*e); sol.push_back(L.point(t1)); t2 = (-f + sqrt(delta))/(2*e); sol.push_back(L.point(t2)); return 2; } //判断并求出两圆的交点 double angle(Vtor v) { return atan2(v.y, v.x); } int getCircleIntersection(Circle C1,Circle C2,vector<Point> &sol) { double d = Length(C2.c - C1.c); // 圆心重合 if (dcmp(d) == 0) { if (dcmp(C1.r - C2.r) == 0) return -1; // 两圆重合 return 0; // 包含 } // 圆心不重合 if (dcmp(C1.r + C2.r - d) < 0) return 0; // 相离 if (dcmp(fabs(C1.r - C2.r) - d) > 0) return 0; // 包含 double a = angle(C2.c - C1.c); double da = acos(C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d); Point p1 = C1.point(a - da), p2 = C1.point(a + da); sol.push_back(p1); if (p1 == p2) return 1; sol.push_back(p2); return 2; } //求点到圆的切线 int getTangents(Point p,Circle C,Vtor *v) { Vtor u = C.c - p; double dis = Length(u); if (dis < C.r) return 0; else if (dcmp(dis - C.r) == 0) { v[0] = Rotate(u,PI/2); return 1; } else { double ang = asin(C.r / dis); v[0] = Rotate(u, -ang); v[1] = Rotate(u, ang); return 2; } } //求两圆的切线 int getCircleTangents(Circle A,Circle B,Point *a,Point *b) { int cnt = 0; if (A.r < B.r) { swap(A,B); swap(a, b) ; } //圆心距的平方 double d2 = (A.c.x - B.c.x)*(A.c.x - B.c.x) + (A.c.y - B.c.y)*(A.c.y - B.c.y); double rdiff = A.r - B.r; double rsum = A.r + B.r; double base = angle(B.c - A.c); //重合有无限多条 if (d2 == 0 && dcmp(A.r - B.r) == 0) return -1; //内切 if (dcmp(d2 - rdiff*rdiff) == 0) { a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++; return 1; } //有外公切线 double ang = acos((A.r - B.r) / sqrt(d2)); a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++; a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++; //一条内切线 if (dcmp(d2 - rsum*rsum) == 0) { a[cnt] = A.point(base); b[cnt] = B.point(PI + base); cnt++; }//两条内切线 else if (dcmp(d2 - rsum*rsum) > 0) { double ang = acos((A.r + B.r) / sqrt(d2)); a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++; a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++; } return cnt; }